怎么实现分库分表

时间:2025-05-11 07:53:28
什么时候既分库又分表?
那么什么时候分库又分表呢,那就是既需要解决并发量大的问题,又需要解决数据量大的问题时候。通常情况下,高并发和数据量大的问题都是同时发生的,所以,我们会经常遇到分库分表需要同时进行的情况。
所以,当你的数据库链接也不够了,并且单表数据量也很大导致查询比较慢的时候,就需要做既分库又分表了。
横向拆分和纵向拆分
谈及到分库分表,那就要涉及到该如何做拆分的问题。
通常在做拆分的时候有两种分法,分别是横向拆分(水平拆分)和纵向拆分(垂直拆分)。假如我们有一张表,如果把这张表中某一条记录的多个字段,拆分到多张表中,这种就是纵向拆分。那如果把一张表中的不同的记录分别放到不同的表中,这种就是横向拆分。
横向拆分的结果是数据库表中的数据会分散到多张分表中,使得每一个单表中的数据的条数都有所下降。比如我们可以把不同的用户的订单分表拆分放到不同的表中。
纵向拆分的结果是数据库表中的数据的字段数会变少,使得每一个单表中的数据的存储有所下降。比如我可以把商品详情信息、价格信息、库存信息等等分别拆分到不同的表中。
还有我们谈到的针对不同的业务做拆分成多个数据库的这种情况,其实也是纵向拆分的一种。
分表字段的选择
在分库分表的过程中,我们需要有一个字段用来进行分表,比如按照用户分表、按照时间分表、按照地区分表。这里面的用户、时间、地区就是所谓的分表字段。
那么,在选择这个分表字段的时候,一定要注意,要根据实际的业务情况来做慎重的选择。
比如说我们要对交易订单进行分表的时候,我们可以选择的信息有很多,比如买家Id、卖家Id、订单号、时间、地区等等,具体应该如何选择呢?
通常,如果有特殊的诉求,比如按照月度汇总、地区汇总等以外,我们通常建议大家按照买家Id进行分表。因为这样可以避免一个关键的问题那就是——数据倾斜(热点数据)。