和神经网络不同的是,RNN中的数据批次之间是有相互联系的。输入的数据需要是要求序列化的。
1.将数据处理成序列化;
2.将一号数据传入到隐藏层进行处理,在传入到RNN中进行处理,RNN产生两个结果,一个结果产生分类结果,另外一个结果传入到二号数据的RNN中;
3.所有数据都处理完。
导入数据
import tensorflow as tf
import from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
import matplotlib.pyplot as plt
print ("Packages imported") mnist = input_data.read_data_sets("data/", one_hot=True)
trainimgs, trainlabels, testimgs, testlabels \
= mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels
ntrain, ntest, dim, nclasses \
= trainimgs.shape[0], testimgs.shape[0], trainimgs.shape[1], trainlabels.shape[1]
print ("MNIST loaded")
将28*28像素的数据变成28条数据;隐藏层有128个神经元;定义好权重和偏置;
diminput = 28
dimhidden = 128
dimoutput = nclasses
nsteps = 28
weights = {
'hidden': tf.Variable(tf.random_normal([diminput, dimhidden])),
'out': tf.Variable(tf.random_normal([dimhidden, dimoutput]))
}
biases = {
'hidden': tf.Variable(tf.random_normal([dimhidden])),
'out': tf.Variable(tf.random_normal([dimoutput]))
}
定义RNN函数。将数据转化一下;计算隐藏层;将隐藏层切片;计算RNN产生的两个结果;预测值是最后一个RNN产生的LSTM_O
def _RNN(_X, _W, _b, _nsteps, _name):
# 1. Permute input from [batchsize, nsteps, diminput]
# => [nsteps, batchsize, diminput]
_X = tf.transpose(_X, [1, 0, 2])
# 2. Reshape input to [nsteps*batchsize, diminput]
_X = tf.reshape(_X, [-1, diminput])
# 3. Input layer => Hidden layer
_H = tf.matmul(_X, _W['hidden']) + _b['hidden']
# 4. Splite data to 'nsteps' chunks. An i-th chunck indicates i-th batch data
_Hsplit = tf.split(0, _nsteps, _H)
# 5. Get LSTM's final output (_LSTM_O) and state (_LSTM_S)
# Both _LSTM_O and _LSTM_S consist of 'batchsize' elements
# Only _LSTM_O will be used to predict the output.
with tf.variable_scope(_name) as scope: scope.reuse_variables()
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(dimhidden, forget_bias=1.0)
_LSTM_O, _LSTM_S = tf.nn.rnn(lstm_cell, _Hsplit,dtype=tf.float32)
# 6. Output
_O = tf.matmul(_LSTM_O[-1], _W['out']) + _b['out']
# Return!
return {
'X': _X, 'H': _H, 'Hsplit': _Hsplit,
'LSTM_O': _LSTM_O, 'LSTM_S': _LSTM_S, 'O': _O
}
print ("Network ready")
定义好RNN后,定义损失函数等
learning_rate = 0.001
x = tf.placeholder("float", [None, nsteps, diminput])
y = tf.placeholder("float", [None, dimoutput])
myrnn = _RNN(x, weights, biases, nsteps, 'basic')
pred = myrnn['O']
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
optm = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # Adam Optimizer
accr = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(pred,1), tf.argmax(y,1)), tf.float32))
init = tf.global_variables_initializer()
print ("Network Ready!")
进行训练
training_epochs = 5
batch_size = 16
display_step = 1
sess = tf.Session()
sess.run(init)
print ("Start optimization")
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/batch_size) # Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
batch_xs = batch_xs.reshape((batch_size, nsteps, diminput))
# Fit training using batch data
feeds = {x: batch_xs, y: batch_ys}
sess.run(optm, feed_dict=feeds)
# Compute average loss
avg_cost += sess.run(cost, feed_dict=feeds)/total_batch
# Display logs per epoch step
if epoch % display_step == 0:
print ("Epoch: %03d/%03d cost: %.9f" % (epoch, training_epochs, avg_cost))
feeds = {x: batch_xs, y: batch_ys}
train_acc = sess.run(accr, feed_dict=feeds)
print (" Training accuracy: %.3f" % (train_acc))
testimgs = testimgs.reshape((ntest, nsteps, diminput))
feeds = {x: testimgs, y: testlabels, istate: np.zeros((ntest, 2*dimhidden))}
test_acc = sess.run(accr, feed_dict=feeds)
print (" Test accuracy: %.3f" % (test_acc))
print ("Optimization Finished.")