题意:
有N个小松鼠,它们的家用一个点x,y表示,两个点的距离定义为:点(x,y)和它周围的8个点即上下左右四个点和对角的四个点,距离为1。现在N个松鼠要走到一个松鼠家去,求走过的最短距离。
n <= 1e5;
思路:
题意描述的是切比雪夫距离,就是两点之间的距离为max(dx,dy)。要求所有点的话,用曼哈顿距离配上前缀和能比较快得求出来。
所以要把切比雪夫距离转化为曼哈顿距离。
曼哈顿距离通过对x,y坐标分别排序求前缀和,可以O(n)得出所有点的曼哈顿距离前缀和。
#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> using namespace std;
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull;
//typedef __int128 bll;
typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3;
typedef pair<ll,int>pli;
//priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n'
//#define R register
#define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
#define max3(a,b,c) max(max(a,b), c);
#define min3(a,b,c) min(min(a,b), c);
//priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //
const int mod = 1e9+;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
} /*-----------------------showtime----------------------*/ const int maxn = 1e5+;
struct node
{
ll x,y;
int id;
}p[maxn]; bool cmpx(node a, node b){
return a.x < b.x;
} bool cmpy(node a,node b){
return a.y < b.y;
}
ll sum[maxn],sx[maxn],sy[maxn];
int main(){
int n;
scanf("%d", &n);
for(int i=; i<=n; i++){
ll x,y;
scanf("%lld%lld", &x, &y);
p[i].x = x+y;
p[i].y = x-y;
p[i].id = i;
} sort(p+,p++n,cmpx); for(int i=; i<=n; i++) sx[i] = sx[i-] + p[i].x;
for(int i= ;i<=n; i++){ sum[p[i].id] = p[i].x*(i-) - sx[i-] + sx[n] - sx[i] - p[i].x*(n-i);
} sort(p+,p++n,cmpy); for(int i=; i<=n; i++) sy[i] = sy[i-] + p[i].y; ll ans = inff; for(int i= ;i<=n; i++){ ll tmp = p[i].y*(i-) - sy[i-] + sy[n] - sy[i] - p[i].y*(n-i);
ans = min(ans, sum[p[i].id] + tmp);
}
printf("%lld\n", ans/);
return ;
}