人工神经网络(ANN) 简称神经网络(NN),能模拟生物神经系统对物体所作出的交互反应,是由具有适应性的简单单元(称为神经元)组成的广泛并行互连网络。
1 神经元
1.1 M-P 神经元
如下图所示,来自其它神经元的信号,$x_1, x_2, ... , x_n $,传递过来作为输入信号,并通过带权重 ($w_1, w_2, ... , w_n$) 的连接 (connection) 继续传递,
然后神经元的总输入值 $\sum w_i x_i$ 与阈值 $\theta$ 作比较,最后经过激活函数$\,f\,$产生神经元的输出: $y = f\left(\,\sum \limits_{i=1}^n {w_i x_i} - \theta \right)$
1.2 激活函数 (activation function)
理想中,阶跃函数可作为激活函数,将输入值映射为输出值 “0” 和 “1;实际中,常用 Sigmoid 函数作激活函数, $f(x)=\,\dfrac{1}{1+e^{-x}}$,如下图所示:
OpenCV 中使用的激活函数是另一种形式,$f(x)=\beta \,\dfrac{1-e^{-\alpha x}}{1+e^{-\alpha x}}$
当 α = β = 1 时,$f(x)=\dfrac{1-e^{-x}}{1+e^{x}}$,该函数把可能在较大范围内变化的输入值,“挤压” 到 (-1, 1) 的输出范围内
具体的设置函数如下,param1 --> α,param2 --> β
// 设置激活函数,目前只支持 ANN_MLP::SIGMOID_SYM
virtual void cv::ml::ANN_MLP::setActivationFunction(int type, double param1 = , double param2 = );
2 神经网络
2.1 感知机 (perceptron)
感知机由两层神经元组成,输入层接收外界输入信号,而输出层则是一个 M-P 神经元。
实际上,感知机可视为一个最简单的“神经网络”,用它可很容易的实现逻辑与、或、非等简单运算。
2.2 层级结构
常见的神经网络,可分为三层:输入层、隐含层、输出层。输入层接收外界输入,隐层和输出层负责对信号进行加工,输出层输出最终的结果。
以下图为例:每层神经元与下一层神经元全互连,而同层神经元之间不连接,也不存在跨层连接,这样的结构称为“多层前馈神经网络”(multi-layer feedforward neural networks)
2.3 层数设置
OpenCV 中,设置神经网络层数和神经元个数的函数为 setLayerSizes(InputArray _layer_sizes),则上图对应的 InputArray 可由如下代码来构成
// (a) 3层,输入层神经元个数为 4,隐层的为 6,输出层的为 4
Mat layers_size = (Mat_<int>(,) << ,,); // (b) 4层,输入层神经元个数为 4,第一个隐层的为 6,第二个隐层的为 5,输出层的为 4
Mat layers_size = (Mat_<int>(,) << ,,5,);
如何设置隐层神经元的个数仍是个未决的问题,实际中多采用“试错法”来调整
3 OpenCV 函数
1) 创建
static Ptr<ANN_MLP> cv::ml::ANN_MLP::create(); // 创建空模型
2) 设置参数
// 设置神经网络的层数和神经元数量
virtual void cv::ml::ANN_MLP::setLayerSizes(InputArray _layer_sizes); // 设置激活函数,目前只支持 ANN_MLP::SIGMOID_SYM
virtual void cv::ml::ANN_MLP::setActivationFunction(int type, double param1 = , double param2 = ); // 设置训练方法,默认为 ANN_MLP::RPROP,较常用的是 ANN_MLP::BACKPROP
// 若设为 ANN_MLP::BACKPROP,则 param1 对应 setBackpropWeightScale()中的参数,param2 对应 setBackpropMomentumScale() 中的参数
virtual void cv::ml::ANN_MLP::setTrainMethod(int method, double param1 = , double param2 = );
virtual void cv::ml::ANN_MLP::setBackpropWeightScale(double val); // 默认值为 0.1
virtual void cv::ml::ANN_MLP::setBackpropMomentumScale(double val); // 默认值为 0.1 // 设置迭代终止准则,默认为 TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, 0.01)
virtual void cv::ml::ANN_MLP::setTermCriteria(TermCriteria val);
3) 训练
// samples - 训练样本; layout - 训练样本为 “行样本” ROW_SAMPLE 或 “列样本” COL_SAMPLE; response - 对应样本数据的分类结果
virtual bool cv::ml::StatModel::train(InputArray samples,int layout,InputArray responses);
4) 预测
// samples,输入的样本书数据;results,输出矩阵,默认不输出;flags,标识,默认为 0
virtual float cv::ml::StatModel::predict(InputArray samples, OutputArray results=noArray(),int flags=) const;
4 代码示例
下面是 OpenCV 3.3 中,在“支持向量机”的例程上做的修改,使用 BP 神经网络,实现了和 SVM 相同的分类功能。
OpenCV 中的 支持向量机 (Support Vector Machine),可参见另一篇博文 OpenCV 之 支持向量机 (一)
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/imgcodecs/imgcodecs.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/ml/ml.hpp" using namespace cv; int main()
{
// 512 x 512 零矩阵
int width = , height = ;
Mat img = Mat::zeros(height, width, CV_8UC3); // 训练样本
float train_data[][] = { { , },{ , },{ , },{ , },{, },{, } };
float labels[] = {,,,,,}; // 每个样本数据对应的输出
Mat train_data_mat(, , CV_32FC1, train_data);
Mat labels_mat(, , CV_32FC1, labels); // BP 模型创建和参数设置
Ptr<ml::ANN_MLP> bp = ml::ANN_MLP::create(); Mat layers_size = (Mat_<int>(,) << ,,); // 2维点,1维输出
bp->setLayerSizes(layers_size); bp->setTrainMethod(ml::ANN_MLP::BACKPROP,0.1,0.1);
bp->setActivationFunction(ml::ANN_MLP::SIGMOID_SYM);
bp->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, , /*FLT_EPSILON*/1e-)); // 保存训练好的神经网络参数
bool trained = bp->train(train_data_mat,ml::ROW_SAMPLE,labels_mat);
if (trained) {
bp->save("bp_param");
} // 创建训练好的神经网络
// Ptr<ml::ANN_MLP> bp = ml::ANN_MLP::load("bp_param"); // 显示分类的结果
Vec3b green(, , ), blue(, , );
for (auto i=; i<img.rows; ++i) {
for (auto j=; j<img.cols; ++j) {
Mat sample_mat = (Mat_<float>(, ) << j, i);
Mat response_mat;
bp->predict(sample_mat,response_mat);
float response = response_mat.ptr<float>()[];
if (response > 0.5) {
img.at<Vec3b>(i, j) = green;
} else if (response < 0.5) {
img.at<Vec3b>(i, j) = blue;
}
}
} // 画出训练样本数据
int thickness = -;
int lineType = ;
circle(img, Point(, ), , Scalar(, , ), thickness, lineType);
circle(img, Point(, ), , Scalar(, , ), thickness, lineType);
circle(img, Point(, ), , Scalar(, , ), thickness, lineType);
circle(img, Point(, ), , Scalar(, , ), thickness, lineType);
circle(img, Point(, ), , Scalar(, , ), thickness, lineType);
circle(img, Point(, ), , Scalar(, , ), thickness, lineType); imwrite("result.png", img); // 保存训练的结果
imshow("BP Simple Example", img); waitKey();
}
运行结果如下所示:
注意:OpenCV 3.0 以上版本,相较之前的版本,其中有关机器学习的部分做了较大改动,本人也是踩了一些坑才得到预期的效果。
1) 代码 #25,必须在 setActivationFunction() 之前,否则训练后的结果多为 nan
2) 代码 #46,response_mat 为预测的结果。若输出向量为 1 列,则如 #47 所示,可直接取出预测结果;若输出向量为 n 列,则可取平均值或者最大值。
同时,根据平均值或最大值,代码 #48 处的阈值也要相应的改变。
float response = ;
for (auto i=;i<n;++i) {
response += response_mat.ptr<float>()[i];
}
3) 代码 #39,若已经训练好神经网络的参数,并将其保存到文件 bp_param 中。
则可将 #22 ~ #35 全部注释掉,再反注释掉 #38,这样,直接加载训练好的神经网络,便可以使用了。
参考资料
<机器学习> 周志华 第5章
<统计学习方法> 李航 第1章
OpenCV 3.0 Tutorials -- Neural Networks