洛谷最短路计数SPFA

时间:2023-03-08 20:42:03

题目描述

给出一个N个顶点M条边的无向无权图,顶点编号为1~N。问从顶点1开始,到其他每个点的最短路有几条。

输入输出格式

输入格式:

输入第一行包含2个正整数N,M,为图的顶点数与边数。

接下来M行,每行两个正整数x, y,表示有一条顶点x连向顶点y的边,请注意可能有自环与重边。

输出格式:

输出包括N行,每行一个非负整数,第i行输出从顶点1到顶点i有多少条不同的最短路,由于答案有可能会很大,你只需要输出mod 100003后的结果即可。如果无法到达顶点i则输出0。

输入输出样例

输入样例#1:
5 7
1 2
1 3
2 4
3 4
2 3
4 5
4 5
输出样例#1:
1
1
1
2
4

说明

1到5的最短路有4条,分别为2条1-2-4-5和2条1-3-4-5(由于4-5的边有2条)。

对于20%的数据,N ≤ 100;

对于60%的数据,N ≤ 1000;

对于100%的数据,N<=1000000,M<=2000000。

分析:spfa,进行spfa时顺便数一下有几条最短路,每一次更新时,说明以前记录的都不是最短路,ans[] 更新成到达他的点的ans,相等时加上到他的点的ans。注意要取模

//Gang
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<queue>
#include<cmath>
#define FOR(x,y,z) for(int x=y;x<=z;x++)
#define REP(x,y,z) for(int x=y;x>=z;x--)
#define ll long long
using namespace std;
;
int n,m;
int x,y;
];
];
];
];
int cnt;
struct node{
    int v,next,dis;
}e[];
void add(int u,int v,int dis)
{
    cnt++;
    e[cnt].next=hd[u];
    e[cnt].v=v;
    e[cnt].dis=dis;
    hd[u]=cnt;
}
void SPFA()
{
    memset(dis,0x3f,sizeof(dis));
    queue<int>q;
    q.push();
    book[]=;
    dis[]=;
    ans[]=;
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        book[u]=;
        for(int i=hd[u];i;i=e[i].next)
        {
            int v=e[i].v;
            if(dis[v]>dis[u]+e[i].dis)
            {
                dis[v]=dis[u]+e[i].dis;
                if(!book[v])
                {
                    q.push(v);
                    book[v]=;
                }
                ans[v]=ans[u];
            }
            else if(dis[v]==dis[u]+e[i].dis)
            {
                ans[v]+=ans[u];
                ans[v]%=mod;
            }
        }
    }

}
int main()
{
    scanf("%d%d",&n,&m);
    FOR(i,,m)
    {
        scanf("%d%d",&x,&y);
        add(x,y,);
        add(y,x,);
    }
SPFA();
FOR(i,,n)
printf("%d\n",ans[i]);
    ;
}