电容深入了解

时间:2023-02-05 19:08:17
如何选择滤波电容的大小?
      电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。
电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。
一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。
低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。
电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!
电容的等效模型为一电感L,一电阻R和电容C的串联,
电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.
因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f = 1/(2pi* LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率。
钽电容和电解电容在滤波上有何区别,那种更好?
钽电容充放电速度快,性能稳定,使用寿命较长,价格较高,一般用在性能要求较高的地方;而电解电容一般容量可以做很大,性能一般,有使用寿命一般为3-5年,但是价格便宜,大都用在要求不高的线路当中钽电容的ESR相比铝电解要小很多。对于线性电源来说,其纹波频率较低,用铝电解比较合适,因为它的容量和成本比小,且足够满足滤波要求。而相对开关电源,其纹波频率高,且根据不同的结构对ESR有不同的要求,但普遍是要求ESR小为好,对于容量要求因为频率较高所以要求并不是很高。所以对于高质量的电容来说钽电容的特性相对来说是一个很好的选择。电解电容有标记一方为“-”极,而胆电容有标记一方为“+”极,电源滤波时用大容量电解电容,而退耦时有的采用胆电解。
电容滤波的两个要点
1、电容滤波是有频段的,很多人以为电容是越大越好,其实不然,每个电容有一定的滤波频段,大电容滤低频,小电容滤高频,主要是根据电容的谐振频点来决定,电容在谐振频率点处有最佳的滤波效果!在以谐振点为中心的一段频段之内有较好的滤波效果,其他部分滤波效果不佳!电容的谐振点与电容的容值以及ESL(等效串联电感)相关。通常建议在电源端口增加UF级别电容来滤波几百KHZ到5MHZ之间的差模干扰,原因就是UF级别电容谐振点在1MHZ左右。另外建议加在高频数字电路上我们建议加1nF贴片电容,原因就是1nf电容的谐振频率在100MHZ之间,不同厂家谐振频点有所不同,这样比较好滤波几十MHZ到200MHZ干扰,有利与EMI问题解决!
2、电容选好了,不代表就能滤除干扰!河水泛滥,到达高水位,这时往往会增加一条沟渠引流,那么引到的地方必须是一个低水位的,如果引到一个高水位的水库的话,反而会引起水倒灌,抬高水位。电容滤波与治水问题是一样的,电容只是起到一个沟渠得作用,能否滤波还取决与电容接的地上干扰的大小。我们经常发现工程师解决干扰问题加电容没有效果,有很大程度是地上干扰本身很大!反而把地上干扰引到信号或电源上来!大家需要注意,地上干扰在有些情况小并不是最小的!所以强调滤波有一个重要的基础,就是所接的地要干扰小,就是通常说的“静地”。
所以说,我们采取电容滤波时要达到滤波效果,必须选取合适的电容以及接干扰比较小的地!电容可以根据器件手册与经验,干扰小的地可以在调试时采取仪器方法,有经验工程师在前期原理图以及PCB时要考虑。
电阻、电容、电感高频等效模型
 
 
 
 
 










 
 












 
电感和电容的滤波有什么不同
电感隔交通直 电容隔直通交 电感是滤高频,电容滤低频 
电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波. 
电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。  
电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。 电容和电感的很多特性是恰恰相反的  
电源滤波电容的大小计算  
电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 
电容的等效模型为一电感L,一电阻R和电容C的串联, 
电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 
因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f = 1/(2pi* LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率。 采用电容滤波设计需要考虑参数:     ESR    ESL    耐压值    谐振频率  
AC/DC电源中最基本的整流和滤波 
 
以我们的市电220V 50HZ正弦交流电为例,先通过变压器降压得到的还是一个正弦电压,然后通过全桥整流,把正弦电压的负半周期的部分翻到X轴上方,这样得到的一个函数周期就只有原来的一半了即100HZ的信号,VPP也就变成原来的一半了,这就是一个大小在变,方向不变一个脉动电压信号,然后就需要电容滤波了.  
电容滤波的原理其实也很简单,利用电容的充放电,以脉动电压第一和第二个周期为例,其中任意一个周期的波形就是正弦信号的正半周期的波形,假如负载为空载,当输入电压随着波形
上升,电容的电压也上升,输出电压也和输入电压一样上升,这时电容处于充电状态,当正弦信号达到峰值的时候也就是说此使电容已经能充到最大电量了,然后过了峰值以后,输入电压开始下降,但是由于空载,没有东西消耗电,电容不需要放电,所以输出电压继续保持峰值输出.但是假如有了负载的情况,过了峰值以后输出电压开始需要靠电容放电了,所以观察输出波行就可以发现过了峰值后电压开始缓慢的下降,但是下降的速度是很慢的,而此时输入又已经进入第2个周期又开始充电了,当然理论上假如负载过小导致电容的放电时常数已经小于半个周期,那放完电时输入还没进入第2个周期  
所以在实际AC/DC过程中不可能做到完美的直流,有负载的情况下肯定存在纹波,因为需要电容肯定要放电  
这个就是AC/DC电源中最基本的整流和滤波了  
如何选用滤波电容  
 滤波电容在开关电源中起着非常重要的作用,如何正确选择滤波电容,尤其是输出滤波电容的选择则是每个工程技术人员都十分关心的问题。50Hz工频电路中使用的普通电解电容器,其脉动电压频率仅为100Hz,充放电时间是毫秒数量级。   
    为获得更小的脉动系数,所需的电容量高达数十万μF,因此普通低频铝电解电容器的目标是以提高电容量为主,电容器的电容量、损耗角正切值以及漏电流是鉴别 其优劣的主要参数。而开关电源中的输出滤波电解电容器,其锯齿波电压频率高达数十kHz,甚至是数十MHz,这时电容量并不是其主要指标,衡量高频铝电解 电容优劣的标准是“阻抗-频率”特性,要求在开关电源的工作频率内要有较低的等效阻抗,同时对于半导体器件工作时产生的高频尖峰信号具有良好的滤波作用。 
    普通的低频电解电容器在10kHz左右便开始呈现感性,无法满足开关电源的使用要求。而开关电源专用的高频铝电解电容器有四个端子,正极铝片的两端分别引 出作为电容器的正极,负极铝片的两端也分别引出作为负极。电流从四端电容的一个正端流入,经过电容内部,再从另一个正端流向负载;从负载返回的电流也从电 容的一个负端流入,再从另一个负端流向电源负端。由于四端电容具有良好的高频特性,为减小电压的脉动分量以及抑制开关尖峰噪声提供了极为有利的手段。高频 铝电解电容器还有多芯的形式,即将铝箔分成较短的若干段,用多引出片并联连接以减小容抗中的阻抗成份。并且采用低电阻率的材料作为引出端子,提高了电容器 承受大电流的能力 
 
大电容由于容量大,所以体积一般也比较大,且通常使用多层卷绕的方式制作,这就导致了大电容的分布电感比较大(也叫等效串联电感,英文简称ESL)。      电感对高频信号的阻抗是很大的,所以,大电容的高频性能不好。而一些小容量电容则刚刚相反,由于容量小,因此体积可以做得很小(缩短了引线,就减小了 ESL,因为一段导线也可以看成是一个电感的),而且常使用平板电容的结构,这样小容量电容就有很小ESL这样它就具有了很好的高频性能,但由于容量小的 缘故,对低频信号的阻抗大。 
      所以,如果我们为了让低频、高频信号都可以很好的通过,就采用一个大电容再并上一个小电容的方式。