#全数据集PCA all_col_mean = colMeans(data.learn.x) #计算训练集每一列的均值 data.learn.PCAx = data.learn.x cols = ncol(data.learn.x) #获取列数 all_col_sd = apply(data.learn.x,2,sd) for (j in 1:cols){ data.learn.PCAx[,j] = data.learn.x[,j] - all_col_mean[j] data.learn.PCAx[,j] = data.learn.PCAx[,j]/all_col_sd[j] } #对训练集每一列特征值进行标准化 data.learn.cov <- cov(data.learn.PCAx,data.learn.PCAx)#求协方差矩阵 data.learn.svd = svd(data.learn.cov)#SVD分解为 U d V all_U <- data.learn.svd$u[,1:REDUCTION] #保留REDUCTION维,约一半 lamda = 1/sqrt(data.learn.svd$d) #计算方差倒数 lamda = lamda[1:REDUCTION] #选择前REDUCTION维 for (i in 1:REDUCTION){ all_U[,i] <- all_U[,i] * lamda[i] #ZCA白化 } data.learn.PCAx = data.learn.PCAx%*%all_U #原特征正交旋转并降维 colnames(data.learn.PCAx) = c("V1","V2","V3","V4") data.valid.PCAx = data.valid.x for (j in 1:cols){ data.valid.PCAx[,j] = data.valid.x[,j] - all_col_mean[j] data.valid.PCAx[,j] = data.valid.PCAx[,j]/all_col_sd[j] } #对测试集每一列特征值进行标准化 data.valid.PCAx = data.valid.PCAx%*%all_U #原特征正交旋转并降维 colnames(data.valid.PCAx) = c("V1","V2","V3","V4")