文件名称:基于迁移学习的多源数据隐私保护方法研究_付玉香.pdf
文件大小:1.01MB
文件格式:PDF
更新时间:2022-08-07 04:47:17
privacy
隐私保护的多源数据分析是大数据分析的研究热点,在多方隐私数据中学习分类器具有重要应用。提出两阶段的隐私保护分析器模型,首先在本地使用具有隐私保护性的PATE-T模型对隐私数据训练分类器;然后集合多方分类器,使用迁移学习将集合知识迁移到全局分类器,建立一个准确的、具有差分隐私的全局分类器。该全局分类器无需访问任何一方隐私数据。实验结果表明,全局分类器不仅能够很好地诠释各个本地分类器,而且还可以保护各方隐私训练数据的细节。