卷积神经网络(CNN)前向传播算法

时间:2022-08-22 19:47:40

    在卷积神经网络(CNN)模型结构中,我们对CNN的模型结构做了总结,这里我们就在CNN的模型基础上,看看CNN的前向传播算法是什么样子的。重点会和传统的DNN比较讨论。

1. 回顾CNN的结构

    在上一篇里,我们已经讲到了CNN的结构,包括输出层,若干的卷积层+ReLU激活函数,若干的池化层,DNN全连接层,以及最后的用Softmax激活函数的输出层。这里我们用一个彩色的汽车样本的图像识别再从感官上回顾下CNN的结构。图中的CONV即为卷积层,POOL即为池化层,而FC即为DNN全连接层,包括了我们上面最后的用Softmax激活函数的输出层。

卷积神经网络(CNN)前向传播算法

    从上图可以看出,要理顺CNN的前向传播算法,重点是输入层的前向传播,卷积层的前向传播以及池化层的前向传播。而DNN全连接层和用Softmax激活函数的输出层的前向传播算法我们在讲DNN时已经讲到了。

2. CNN输入层前向传播到卷积层

    输入层的前向传播是CNN前向传播算法的第一步。一般输入层对应的都是卷积层,因此我们标题是输入层前向传播到卷积层。

    我们这里还是以图像识别为例。

    先考虑最简单的,样本都是二维的黑白图片。这样输入层$X$就是一个矩阵,矩阵的值等于图片的各个像素位置的值。这时和卷积层相连的卷积核$W$就也是矩阵。

    如果样本都是有RGB的彩色图片,这样输入$X$就是3个矩阵,即分别对应R,G和B的矩阵,或者说是一个张量。这时和卷积层相连的卷积核$W$就也是张量,对应的最后一维的维度为3.即每个卷积核都是3个子矩阵组成。

    同样的方法,对于3D的彩色图片,或者有透明度的图片,我们的输入$X$可以是4维,5维的张量,那么对应的卷积核$W$也是个高维的张量。

    不管维度多高,对于我们的输入,前向传播的过程可以表示为:$$ a^2= \sigma(z^2) = \sigma(a^1*W^2 +b^2)$$

    其中,上标代表层数,星号代表卷积,而b代表我们的偏倚, $\sigma$为激活函数,这里一般都是ReLU。

    和DNN的前向传播比较一下,其实形式非常的像,只是我们这儿是张量的卷积,而不是矩阵的乘法。同时由于$W$是张量,那么同样的位置,$W$参数的个数就比DNN多很多了。

    为了简化我们的描述,本文后面如果没有特殊说明,我们都默认输入是3维的张量,即用RBG可以表示的彩色图片。

    这里需要我们自己定义的CNN模型参数是:

    1) 一般我们的卷积核不止一个,比如有K个,那么我们输入层的输出,或者说第二层卷积层的对应的输入就K个。

    2) 卷积核中每个子矩阵的的大小,一般我们都用子矩阵为方阵的卷积核,比如FxF的子矩阵。

    3) 填充padding(以下简称P),我们卷积的时候,为了可以更好的识别边缘,一般都会在输入矩阵在周围加上若干圈的0再进行卷积,加多少圈则P为多少。

    4) 步幅stride(以下简称S),即在卷积过程中每次移动的像素距离大小。

    这些参数我们在上一篇都有讲述。

3. 隐藏层前向传播到卷积层

    现在我们再来看普通隐藏层前向传播到卷积层时的前向传播算法。

    假设隐藏层的输出是M个矩阵对应的三维张量,则输出到卷积层的卷积核也是M个子矩阵对应的三维张量。这时表达式和输入层的很像,也是$$ a^l= \sigma(z^l) = \sigma(X^{l-1}*W^l +b^l)$$

    其中,上标代表层数,星号代表卷积,而b代表我们的偏倚, $\sigma$为激活函数,这里一般都是ReLU。

    和上一节唯一的区别仅仅在于,这里的输入是隐藏层来的,而不是我们输入的原始图片样本形成的矩阵。

    需要我们定义的CNN模型参数也和上一节一样,这里我们需要定义卷积核的个数K,卷积核子矩阵的维度F,填充大小P以及步幅S。

4. 隐藏层前向传播到池化层

    池化层的处理逻辑是比较简单的,我们的目的就是对输入的矩阵进行缩小概括。比如输入的若干矩阵是NxN维的,而我们的池化大小是kxk的区域,则输出的矩阵都是$\frac{N}{k} \times \frac{N}{k}$维的。

    这里需要需要我们定义的CNN模型参数是:

    1)池化区域的大小k

    2)池化的标准,一般是MAX或者Average。

5. 隐藏层前向传播到全连接层

    由于全连接层就是普通的DNN模型结构,因此我们可以直接使用DNN的前向传播算法逻辑,即:$$a^l = \sigma(z^l) = \sigma(W^la^{l-1} + b^l)$$

    这里的激活函数一般是sigmoid或者tanh。

    经过了若干全连接层之后,最后的一层为Softmax输出层。此时输出层和普通的全连接层唯一的区别是,激活函数是softmax函数。

    这里需要需要我们定义的CNN模型参数是:

    1)全连接层的激活函数

    2)全连接层各层神经元的个数

6. CNN前向传播算法小结

    有了上面的基础,我们现在总结下CNN的前向传播算法。

    输入:1个图片样本,CNN模型的层数L和所有隐藏层的类型,对于卷积层,要定义卷积核的大小K,卷积核子矩阵的维度F,填充大小P,步幅S。对于池化层,要定义池化区域大小k和池化标准(MAX或Average),对于全连接层,要定义全连接层的激活函数(输出层除外)和各层的神经元个数。

    输出:CNN模型的输出$a^L$

    1) 根据输入层的填充大小P,填充原始图片的边缘,得到输入张量$a^1$。

    2)初始化所有隐藏层的参数$W,b$  

    3)for $l$=2 to $L-1$:

      a) 如果第$l$层是卷积层,则输出为$$ a^l= ReLU(z^l) = ReLU(a^{l-1}*W^l +b^l)$$  

       b) 如果第$l$层是池化层,则输出为$ a^l= pool(a^{l-1})$, 这里的pool指按照池化区域大小k和池化标准将输入张量缩小的过程。

      c) 如果第$l$层是全连接层,则输出为$$ a^l= \sigma(z^l) = \sigma(W^la^{l-1} +b^l)$$

    4)对于输出层第L层: $$ a^L= softmax(z^L) = softmax(W^La^{L-1} +b^L)$$

    以上就是CNN前向传播算法的过程总结。有了CNN前向传播算法的基础,我们后面再来理解CNN的反向传播算法就简单多了。下一篇我们来讨论CNN的反向传播算法。

(欢迎转载,转载请注明出处。欢迎沟通交流: pinard.liu@ericsson.com)

参考资料:

1) Neural Networks and Deep Learning by By Michael Nielsen

2) Deep Learning, book by Ian Goodfellow, Yoshua Bengio, and Aaron Courville

3) UFLDL Tutorial

4)CS231n Convolutional Neural Networks for Visual Recognition, Stanford

 

卷积神经网络(CNN)前向传播算法的更多相关文章

  1. 吴裕雄 python 神经网络——TensorFlow 三层简单神经网络的前向传播算法

    import tensorflow as tf w1= tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1)) w2= tf.Variable( ...

  2. 卷积神经网络(CNN)反向传播算法

    在卷积神经网络(CNN)前向传播算法中,我们对CNN的前向传播算法做了总结,基于CNN前向传播算法的基础,我们下面就对CNN的反向传播算法做一个总结.在阅读本文前,建议先研究DNN的反向传播算法:深度 ...

  3. 2. CNN卷积网络-前向传播算法

    1. CNN卷积网络-初识 2. CNN卷积网络-前向传播算法 3. CNN卷积网络-反向更新 1. 前言 我们已经了解了CNN的结构,CNN主要结构有输入层,一些卷积层和池化层,后面是DNN全连接层 ...

  4. 卷积神经网络 cnnff.m程序 中的前向传播算法 数据 分步解析

    最近在学习卷积神经网络,哎,真的是一头雾水!最后决定从阅读CNN程序下手! 程序来源于GitHub的DeepLearnToolbox 由于确实缺乏理论基础,所以,先从程序的数据流入手,虽然对高手来讲, ...

  5. 深度神经网络(DNN)模型与前向传播算法

    深度神经网络(Deep Neural Networks, 以下简称DNN)是深度学习的基础,而要理解DNN,首先我们要理解DNN模型,下面我们就对DNN的模型与前向传播算法做一个总结. 1. 从感知机 ...

  6. 卷积神经网络(CNN)模型结构

    在前面我们讲述了DNN的模型与前向反向传播算法.而在DNN大类中,卷积神经网络(Convolutional Neural Networks,以下简称CNN)是最为成功的DNN特例之一.CNN广泛的应用 ...

  7. 深度学习之卷积神经网络(CNN)的应用-验证码的生成与识别

    验证码的生成与识别 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10755361.html 目录 1.验证码的制 ...

  8. paper 162:卷积神经网络(CNN)解析

    卷积神经网络(CNN)解析: 卷积神经网络CNN解析 概揽 Layers used to build ConvNets 卷积层Convolutional layer 池化层Pooling Layer ...

  9. 卷积神经网络CNN总结

    从神经网络到卷积神经网络(CNN)我们知道神经网络的结构是这样的: 那卷积神经网络跟它是什么关系呢?其实卷积神经网络依旧是层级网络,只是层的功能和形式做了变化,可以说是传统神经网络的一个改进.比如下图 ...

随机推荐

  1. ListDefinition Tips

    1)ListTemplate.Type位数不能太长(最长7位),否则启用内容类型后,列表设置中会抛异常. <ListTemplate Name="List1" Type=&q ...

  2. C&num;调用WebService &lpar;转&rpar;

    1.1.Web Service基本概念 Web Service也叫XML Web Service WebService是一种可以接收从Internet或者Intranet上的其它系统中传递过来的请求, ...

  3. Leetcode 9 Palindrome Number 数论

    判断一个数是否是回文数 方法是将数回转,看回转的数和原数是否相同 class Solution { public: bool isPalindrome(int x) { ) return false; ...

  4. Java 生成压缩包,ZipOutputStream的使用

    案例:根据url 获取网络资源A,B,C   将资源A,B,C放在一起生成一个xxx.zip 直接看代码 import java.io.File; import java.io.FileOutputS ...

  5. SQLServer如何快速生成100万条不重复的随机8位数字

    最近在论坛看到有人问,如何快速生成100万不重复的8位编号,对于这个问题,有几点是需要注意的: 1.    如何生成8位随机数,生成的数越随机,重复的可能性当然越小 2.    控制不重复 3.    ...

  6. 关于Javascript函数的几点笔记

    函数本质上是一个有名字的程序块,程序块使得多条语句可以一起执行. 变量类型: 1.复杂类型:Object.Array等. 2.原始类型:String.Integer等. 函数参数: 1.复杂类型:传递 ...

  7. UDP编程&lpar;八&rpar;

    此为网络编程系列的目录,后续会把内容补上.......

  8. Fusioncharts图表组件API参考方法(Functions)汇总篇(续)

    [摘要]: chartType()FusionCharts的JavaScript类API提供了大量的功能.下面的列表显示在每个功能的详细信息: 一.FusionCharts的类 - 实例功能 1.co ...

  9. PHP&plus;Redis 实例【一】点赞 &plus; 热度 下篇

    这篇主要讲如何将数据保存回Mysql,但是里面还会涉及到如何将错误信息以及提示信息保存到文件里,方便以后的运维,再有就是如何使用PHP写进程BAT. Redis数据刷回数据库前的知识准备 首先针对上篇 ...

  10. python&colon; 递归函数&lpar;科赫雪花&rpar;

    import turtle as t def kehe(size,n): #递归函数 if n==0: t.fd(size) #阶数为0时,为一直线 else: for i in [0,60,-120 ...