235.236. Lowest Common Ancestor of a Binary (Search) Tree -- 最近公共祖先

时间:2023-03-10 02:11:15
235.236. Lowest Common Ancestor of a Binary (Search) Tree -- 最近公共祖先

235. Lowest Common Ancestor of a Binary Search Tree

Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.

According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”

        _______6______
/ \
___2__ ___8__
/ \ / \
0 _4 7 9
/ \
3 5

For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.

TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
while(root) {
if (p->val > root->val && q->val > root->val) {
root = root->right;
continue;
}
if (p->val < root->val && q->val < root->val) {
root = root->left;
continue;
}
return root;
}
return NULL;
}

236. Lowest Common Ancestor of a Binary Tree

Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.

According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”

        _______3______
/ \
___5__ ___1__
/ \ / \
6 _2 0 8
/ \
7 4

For example, the lowest common ancestor (LCA) of nodes 5 and 1 is 3. Another example is LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.

(1)一次递归找两个节点

TreeNode* lowestCommonAncestor02(TreeNode* root, TreeNode* p, TreeNode* q) {

    //return if found or not found, return NULL if not found
if (root==NULL || root == p || root == q) return root; //find the LCA in left tree
TreeNode* left = lowestCommonAncestor02(root->left, p, q);
//find the LCA in right tree
TreeNode* right = lowestCommonAncestor02(root->right, p, q); //left==NULL means both `p` and `q` are not found in left tree.
if (left==NULL) return right;
//right==NULL means both `p` and `q` are not found in right tree.
if (right==NULL) return left;
// left!=NULL && right !=NULL, which means `p` & `q` are seperated in left and right tree.
return root;
}

(2)分别记录根节点到所求节点的先序遍历路径,返回路径中最后一个相同的节点

bool findPath(TreeNode* root, TreeNode* p, vector<TreeNode*>& path) {
if (root==NULL) return false;
if (root == p) {
path.push_back(p);
return true;
} path.push_back(root);
if (findPath(root->left, p, path)) return true;
if (findPath(root->right, p, path)) return true;
path.pop_back(); return false;
} //Ordinary way, find the path and comapre the path.
TreeNode* lowestCommonAncestor01(TreeNode* root, TreeNode* p, TreeNode* q) { vector<TreeNode*> path1, path2; if (!findPath(root, p, path1)) return NULL;
if (!findPath(root, q, path2)) return NULL; int len = path1.size() < path2.size() ? path1.size() : path2.size();
TreeNode* result = root;
for(int i=; i<len; i++) {
if (path1[i] != path2[i]) {
return result;
}
result = path1[i];
}
return result;
}