Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______
/ \
___2__ ___8__
/ \ / \
0 _4 7 9
/ \
3 5
For example, the lowest common ancestor (LCA) of nodes 2
and 8
is 6
. Another example is LCA of nodes 2
and 4
is 2
, since a node can be a descendant of itself according to the LCA definition.
思想:如果如果p,q 比root小, 则LCA必定在左子树, 如果p,q比root大, 则LCA必定在右子树. 如果一大一小, 则root即为LCA.
代码如下:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(root==null) return root;
if(root.val>=p.val && root.val<=q.val || root.val<=p.val && root.val>=q.val)
return root;
else if(root.val>=p.val && root.val>=q.val)
return lowestCommonAncestor(root.left,p,q);
else
return lowestCommonAncestor(root.right,p,q); }
}
运行结果: