OpenCV——ANN神经网络

时间:2023-03-09 22:35:19
OpenCV——ANN神经网络

ANN—— Artificial Neural Networks 人工神经网络

//定义人工神经网络
CvANN_MLP bp;
// Set up BPNetwork's parameters
CvANN_MLP_TrainParams params;
params.train_method=CvANN_MLP_TrainParams::BACKPROP;
params.bp_dw_scale=0.1;
params.bp_moment_scale=0.1;
//params.train_method=CvANN_MLP_TrainParams::RPROP;
//params.rp_dw0 = 0.1;
//params.rp_dw_plus = 1.2;
//params.rp_dw_minus = 0.5;
//params.rp_dw_min = FLT_EPSILON;
//params.rp_dw_max = 50.;

两种训练方法:BACKPROP 与 RPROP

BACKPROP的两个参数:

OpenCV——ANN神经网络

RPROP的四个参数:

OpenCV——ANN神经网络

//  training data
float labels[][] = {{,,,,},{,,,,},{,,,,}};
Mat labelsMat(, , CV_32FC1, labels); float trainingData[][] = { {,,,,},{,,,,}, {,,,,} };
Mat trainingDataMat(, , CV_32FC1, trainingData);
// layerSizes设置了有三个隐含层的网络结构:输入层,三个隐含层,输出层。输入层和输出层节点数均为5,中间隐含层每层有两个节点 Mat layerSizes=(Mat_<int>(,) << ,,,,); //create第二个参数可以设置每个神经节点的激活函数,默认为CvANN_MLP::SIGMOID_SYM,即Sigmoid函数
//同时提供的其他激活函数有Gauss(CvANN_mlp::GAUSSIAN)和阶跃函数(CvANN_MLP::IDENTITY)。
 bp.create(layerSizes,CvANN_MLP::SIGMOID_SYM);   //CvANN_MLP::SIGMOID_SYM  
bp.train(trainingDataMat, labelsMat, Mat(),Mat(), params);
//预测新节点
Mat sampleMat = (Mat_<float>(,) << i,j,,,);
Mat responseMat;
bp.predict(sampleMat,responseMat);

float CvANN_MLP::predict(constMat&inputs,Mat&outputs)

图像进行特征提取,把它保存在inputs里,通过调用predict函数,我们得到一个输出向量,它是一个1*nClass的行向量,

其中每一列说明它与该类的相似程度(0-1之间),也可以说是置信度。我们只用对output求一个最大值,就可得到结果。

完整代码:

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/ml/ml.hpp>
#include <iostream>
#include <string> using namespace std;
using namespace cv; int main()
{
CvANN_MLP bp; CvANN_MLP_TrainParams params;
params.train_method=CvANN_MLP_TrainParams::BACKPROP; //(Back Propagation,BP)反向传播算法
params.bp_dw_scale=0.1;
params.bp_moment_scale=0.1; float labels[][] = {{0.9,0.1},{0.1,0.9},{0.9,0.1},{0.1,0.9},{0.9,0.1},{0.9,0.1},{0.1,0.9},{0.1,0.9},{0.9,0.1},{0.9,0.1}};
//这里对于样本标记为0.1和0.9而非0和1,主要是考虑到sigmoid函数的输出为一般为0和1之间的数,只有在输入趋近于-∞和+∞才逐渐趋近于0和1,而不可能达到。
Mat labelsMat(, , CV_32FC1, labels); float trainingData[][] = { {,},{,}, {,}, {,},{,}, {,}, {,},{,}, {,}, {,} };
Mat trainingDataMat(, , CV_32FC1, trainingData);
Mat layerSizes=(Mat_<int>(,) << , , , , ); //5层:输入层,3层隐藏层和输出层,每层均为两个perceptron
bp.create(layerSizes,CvANN_MLP::SIGMOID_SYM);
bp.train(trainingDataMat, labelsMat, Mat(),Mat(), params);
int width = , height = ;
Mat image = Mat::zeros(height, width, CV_8UC3);
Vec3b green(,,), blue (,,); for (int i = ; i < image.rows; ++i)
{
for (int j = ; j < image.cols; ++j)
{
Mat sampleMat = (Mat_<float>(,) << i,j);
Mat responseMat;
bp.predict(sampleMat,responseMat);
float* p=responseMat.ptr<float>();
//
if (p[] > p[])
{
image.at<Vec3b>(j, i) = green;
}
else
{
image.at<Vec3b>(j, i) = blue;
}
}
}
// Show the training data
int thickness = -;
int lineType = ;
circle( image, Point(, ), , Scalar( , , ), thickness, lineType);
circle( image, Point(, ), , Scalar( , , ), thickness, lineType);
circle( image, Point(, ), , Scalar( , , ), thickness, lineType);
circle( image, Point(, ), , Scalar( , , ), thickness, lineType);
circle( image, Point(, ), , Scalar(, , ), thickness, lineType);
circle( image, Point(, ), , Scalar(, , ), thickness, lineType);
circle( image, Point(, ), , Scalar(, , ), thickness, lineType);
circle( image, Point(, ), , Scalar(, , ), thickness, lineType);
circle( image, Point(, ), , Scalar(, , ), thickness, lineType);
circle( image, Point(, ), , Scalar(, , ), thickness, lineType); imwrite("result.png", image); // save the image imshow("BP Simple Example", image); // show it to the user
waitKey(); return ;
}