16.Linux-LCD驱动(详解)

时间:2023-03-09 14:53:43
16.Linux-LCD驱动(详解)

在上一节LCD层次分析中,得出写个LCD驱动入口函数,需要以下4步:

1) 分配一个fb_info结构体: framebuffer_alloc();

2) 设置fb_info

3) 设置硬件相关的操作

4) 使能LCD,并注册fb_info: register_framebuffer()

本节需要用到的函数:

void *dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp);  //分配DMA缓存区给显存
//返回值为:申请到的DMA缓冲区的虚拟地址,若为NULL,表示分配失败,则需要使用dma_free_writecombine()释放内存,避免内存泄漏
//参数如下: //*dev:指针,这里填0,表示这个申请的缓冲区里没有内容 //size:分配的地址大小(字节单位) //*handle:申请到的物理起始地址 //gfp:分配出来的内存参数,标志定义在<linux/gfp.h>,常用标志如下:
//GFP_ATOMIC 用来从中断处理和进程上下文之外的其他代码中分配内存. 从不睡眠.
//GFP_KERNEL 内核内存的正常分配. 可能睡眠.
//GFP_USER 用来为用户空间页来分配内存; 它可能睡眠.

分配一段DMA缓存区,分配出来的内存会禁止cache缓存(因为DMA传输不需要CPU)

它和 dma_alloc_coherent ()函数相似,不过 dma_alloc_coherent ()函数是分配出来的内存会禁止cache缓存以及禁止写入缓冲区


dma_free_writecombine(dev,size,cpu_addr,handle);   //释放缓存
//cpu_addr:虚拟地址,
//handle:物理地址

释放DMA缓冲区, dev和size参数和上面的一样


struct fb_info *framebuffer_alloc(size_t size, struct device *dev);      //申请一个fb_info结构体,
//size:额外的内存,
//*dev:指针, 这里填0,表示这个申请的结构体里没有内容

int register_framebuffer(struct fb_info *fb_info);  

                      //向内核中注册fb_info结构体,若内存不够,注册失败会返回负数

int unregister_framebuffer(struct fb_info *fb_info) ;

                      //注销内核中fb_info结构体

本节需要用到的结构体:

fb_info结构体如下:

struct fb_info {
... ...
struct fb_var_screeninfo var; //可变的参数
struct fb_fix_screeninfo fix; //固定的参数
... ...
struct fb_ops *fbops; //操作函数
... ...
char __iomem *screen_base; //显存虚拟起始地址
unsigned long screen_size; //显存虚拟地址长度

void *pseudo_palette;
//假的16色调色板,里面存放了16色的数据,可以通过8bpp数据来找到调色板里面的16色颜色索引值,模拟出16色颜色来,节省内存,不需要的话就指向一个不用的数组即可
... ...
};

其中操作函数fb_info-> fbops 结构体写法如下:

static struct fb_ops s3c_lcdfb_ops = {
.owner = THIS_MODULE,
.fb_setcolreg = my_lcdfb_setcolreg,//设置调色板fb_info-> pseudo_palette,自己构造该函数 .fb_fillrect = cfb_fillrect, //填充矩形,用/drivers/video/ cfbfillrect.c里的函数即可 .fb_copyarea = cfb_copyarea, //复制数据, 用/drivers/video/cfbcopyarea.c里的函数即可 .fb_imageblit = cfb_imageblit, //绘画图形, 用/drivers/video/imageblit.c里的函数即可
};

固定的参数fb_info-> fix 结构体如下:

struct fb_fix_screeninfo {
char id[]; //id名字
unsigned long smem_start; //framebuffer物理起始地址
__u32 smem_len; //framebuffer长度,字节为单位
__u32 type; //lcd类型,默认值0即可
__u32 type_aux; //附加类型,为0
__u32 visual; //画面设置,常用参数如下
// FB_VISUAL_MONO01 0   单色,0:白色,1:黑色
// FB_VISUAL_MONO10 1   单色,1:白色,0:黑色
// FB_VISUAL_TRUECOLOR 2 真彩(TFT:真彩)
// FB_VISUAL_PSEUDOCOLOR     3 伪彩
// FB_VISUAL_DIRECTCOLOR 4 直彩     __u16 xpanstep; /*如果没有硬件panning就赋值为0 */
    __u16 ypanstep; /*如果没有硬件panning就赋值为0 */
    __u16 ywrapstep; /*如果没有硬件ywrap就赋值为0 */     __u32 line_length; /*一行的字节数 ,例:(RGB565)240*320,那么这里就等于240*16/8 */

    /*以下成员都可以不需要*/
    unsigned long mmio_start; /*内存映射IO的起始地址,用于应用层直接访问寄存器,可以不需要*/
__u32 mmio_len; /* 内存映射IO的长度,可以不需要*/
__u32 accel;
__u16 reserved[]; };

可变的参数fb_info-> var 结构体如下:

structfb_var_screeninfo{
   __u32xres; /*可见屏幕一行有多少个像素点*/
__u32 yres; /*可见屏幕一列有多少个像素点*/
__u32 xres_virtual; /*虚拟屏幕一行有多少个像素点 */
__u32 yres_virtual; /*虚拟屏幕一列有多少个像素点*/
__u32 xoffset; /*虚拟到可见屏幕之间的行偏移,若可见和虚拟的分辨率一样,就直接设为0*/
__u32 yoffset; /*虚拟到可见屏幕之间的列偏移*/
__u32 bits_per_pixel; /*每个像素的位数即BPP,比如:RGB565则填入16*/
__u32 grayscale; /*非0时,指的是灰度,真彩直接填0即可*/ struct fb_bitfield red; //fb缓存的R位域, fb_bitfield结构体成员如下:
//__u32 offset; 区域偏移值,比如RGB565中的R,就在第11位
//__u32 length; 区域长度,比如RGB565的R,共有5位
//__u32 msb_right; msb_right ==0,表示数据左边最大, msb_right!=0,表示数据右边最大

struct fb_bitfield green; /*fb缓存的G位域*/
struct fb_bitfield blue; /*fb缓存的B位域*/    /*以下参数都可以不填,默认为0*/
struct fb_bitfield transp; /*透明度,不需要填0即可*/

__u32nonstd; /* != 0表示非标准像素格式*/
__u32 activate; /*设为0即可*/
__u32height; /*外设高度(单位mm),一般不需要填*/
__u32width; /*外设宽度(单位mm),一般不需要填*/
__u32 accel_flags; /*过时的参数,不需要填*/ /* 除了pixclock本身外,其他的都以像素时钟为 单位*/
__u32pixclock; /*像素时钟(皮秒)*/
__u32 left_margin; /*行切换,从同步到绘图之间的延迟*/
__u32right_margin; /*行切换,从绘图到同步之间的延迟*/
__u32upper_margin; /*帧切换,从同步到绘图之间的延迟*/
__u32lower_margin; /*帧切换,从绘图到同步之间的延迟*/
__u32hsync_len; /*水平同步的长度*/
__u32 vsync_len; /*垂直同步的长度*/
__u32 sync;
__u32 vmode;
__u32 rotate;
__u32reserved[]; /*保留*/ }

1.写驱动程序:

(驱动设置:参考自带的LCD平台驱动drivers/video/s3c2410fb.c )

(LCD控制寄存器设置:参考之前的LCD裸机驱动:http://www.cnblogs.com/lifexy/p/7144890.html)

1.1 步骤如下:

在驱动init入口函数中:

1)分配一个fb_info结构体

2)设置fb_info

  2.1)设置固定的参数fb_info-> fix

  2.2) 设置可变的参数fb_info-> var

  2.3) 设置操作函数fb_info-> fbops

  2.4) 设置fb_info 其它的成员

3)设置硬件相关的操作

  3.1)配置LCD引脚

  3.2)根据LCD手册设置LCD控制器

  3.3)分配显存(framebuffer),把地址告诉LCD控制器和fb_info

4)开启LCD,并注册fb_info: register_framebuffer()

  4.1) 直接在init函数中开启LCD(后面讲到电源管理,再来优化)

    控制LCDCON5允许PWREN信号,

    然后控制LCDCON1输出PWREN信号,

    输出GPB0高电平来开背光,

  4.2) 注册fb_info

在驱动exit出口函数中:

1)卸载内核中的fb_info

2) 控制LCDCON1关闭PWREN信号,关背光,iounmap注销地址

3)释放DMA缓存地址dma_free_writecombine()

4)释放注册的fb_info

1.2 具体代码如下:

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fb.h>
#include <linux/init.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/wait.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/div64.h>
#include <asm/mach/map.h>
#include <asm/arch/regs-lcd.h>
#include <asm/arch/regs-gpio.h>
#include <asm/arch/fb.h> /*LCD : 480*272 */
#define LCD_xres 480 //LCD 行分辨率
#define LCD_yres 272 //LCD列分辨率 /* GPIO prot */
static unsigned long *GPBcon;
static unsigned long *GPCcon;
static unsigned long *GPDcon;
static unsigned long *GPGcon; //GPG4:控制LCD信号
static unsigned long *GPBdat; //GPB0: 控制背光

/* LCD control */
struct lcd_reg{
unsigned long lcdcon1;
unsigned long lcdcon2;
unsigned long lcdcon3;
unsigned long lcdcon4;
unsigned long lcdcon5;
unsigned long lcdsaddr1;
unsigned long lcdsaddr2;
unsigned long lcdsaddr3 ;
unsigned long redlut;
unsigned long greenlut;
unsigned long bluelut;
unsigned long reserved[];
unsigned long dithmode;
unsigned long tpal ;
unsigned long lcdintpnd;
unsigned long lcdsrcpnd;
unsigned long lcdintmsk;
unsigned long tconsel;
}; static struct lcd_reg *lcd_reg; static struct fb_info *my_lcd; //定义一个全局变量
static u32 pseudo_palette[]; //调色板数组,被fb_info->pseudo_palette调用 static inline unsigned int chan_to_field(unsigned int chan, struct fb_bitfield *bf)
{
/*内核中的单色都是16位,默认从左到右排列,比如G颜色[0x1f],那么chan就等于0XF800*/
chan &= 0xffff;
chan >>= - bf->length; //右移,将数据靠到位0上
return chan << bf->offset; //左移一定偏移值,放入16色数据中对应的位置
} static int my_lcdfb_setcolreg(unsigned int regno, unsigned int red,unsigned int green, unsigned int blue,unsigned int transp, struct fb_info *info) //设置调色板函数,供内核调用
{
unsigned int val;
if (regno >=) //调色板数组不能大于15
return ; /* 用red,green,blue三个颜色值构造出16色数据val */
val = chan_to_field(red, &info->var.red);
val |= chan_to_field(green, &info->var.green);
val |= chan_to_field(blue, &info->var.blue); ((u32 *)(info->pseudo_palette))[regno] = val; //放到调色板数组中
return ;
} static struct fb_ops my_lcdfb_ops = {
.owner = THIS_MODULE,
.fb_setcolreg = my_lcdfb_setcolreg,//调用my_lcdfb_setcolreg()函数,来设置调色板fb_info-> pseudo_palette
.fb_fillrect = cfb_fillrect, //填充矩形
.fb_copyarea = cfb_copyarea, //复制数据
.fb_imageblit = cfb_imageblit, //绘画图形,
}; static int lcd_init(void)
{
/*1.申请一个fb_info结构体*/
my_lcd= framebuffer_alloc(,); /*2.设置fb_info*/ /* 2.1设置固定的参数fb_info-> fix */
/*my_lcd->fix.smem_start 物理地址后面注册MDA缓存区设置*/
strcpy(my_lcd->fix.id, "mylcd"); //名字
my_lcd->fix.smem_len =LCD_xres*LCD_yres*; //地址长
my_lcd->fix.type =FB_TYPE_PACKED_PIXELS;
my_lcd->fix.visual =FB_VISUAL_TRUECOLOR; //真彩色
my_lcd->fix.line_length =LCD_xres*; //LCD 一行的字节 /* 2.2 设置可变的参数fb_info-> var */
my_lcd->var.xres =LCD_xres; //可见屏X 分辨率
my_lcd->var.yres =LCD_yres; //可见屏y 分辨率
my_lcd->var.xres_virtual =LCD_xres; //虚拟屏x分辨率
my_lcd->var.yres_virtual =LCD_yres; //虚拟屏y分辨率
my_lcd->var.xoffset = ; //虚拟到可见屏幕之间的行偏移
my_lcd->var.yoffset =; //虚拟到可见屏幕之间的行偏移 my_lcd->var.bits_per_pixel=; //像素为16BPP
my_lcd->var.grayscale = ; //灰色比例 my_lcd->var.red.offset = ;
my_lcd->var.red.length = ;
my_lcd->var.green.offset = ;
my_lcd->var.green.length = ;
my_lcd->var.blue.offset = ;
my_lcd->var.blue.length = ; /* 2.3 设置操作函数fb_info-> fbops */
my_lcd->fbops = &my_lcdfb_ops; /* 2.4 设置fb_info 其它的成员 */
/*my_lcd->screen_base 虚拟地址在后面注册MDA缓存区设置*/
my_lcd->pseudo_palette =pseudo_palette; //保存调色板数组
my_lcd->screen_size =LCD_xres * LCD_yres *; //虚拟地址长 /*3 设置硬件相关的操作*/
/*3.1 配置LCD引脚*/
GPBcon = ioremap(0x56000010, );
GPBdat = GPBcon+;
GPCcon = ioremap(0x56000020, );
GPDcon     = ioremap(0x56000030, );
GPGcon      = ioremap(0x56000060, ); *GPBcon &=~(0x03<<(*));
*GPBcon |= (0x01<<(*)); //PGB0背光
*GPBdat &=~(0X1<<); //关背光
*GPCcon =0xaaaaaaaa;
*GPDcon =0xaaaaaaaa;
*GPGcon |=(0x03<<(*)); //GPG4:LCD信号 /*3.2 根据LCD手册设置LCD控制器,参考之前的裸机驱动*/
lcd_reg=ioremap(0X4D000000, sizeof( lcd_reg) );
/*HCLK:100Mhz */
lcd_reg->lcdcon1 = (<<) | (0X3<<) | (0x0C<<) ;
lcd_reg->lcdcon2 = (()<<) | (<<) | (()<<) |(()<<);
lcd_reg->lcdcon3 = (()<<) | (<<) | (());
lcd_reg->lcdcon4 = ();
lcd_reg->lcdcon5 = (<<) | (<<) | (<<) |(<<); lcd_reg->lcdcon1 &=~(<<); // 关闭PWREN信号输出
lcd_reg->lcdcon5 &=~(<<); //禁止PWREN信号 /* 3.3 分配显存(framebuffer),把地址告诉LCD控制器和fb_info*/
my_lcd->screen_base=dma_alloc_writecombine(,my_lcd->fix.smem_len, &my_lcd->fix.smem_start, GFP_KERNEL); /*lcd控制器的地址必须是物理地址*/
lcd_reg->lcdsaddr1 =(my_lcd->fix.smem_start>>)&0X3FFFFFFF; //保存缓冲起始地址A[30:1]
lcd_reg->lcdsaddr2 =((my_lcd->fix.smem_start+my_lcd->screen_size)>>)&0X1FFFFF; //保存存缓冲结束地址A[21:1]
lcd_reg->lcdsaddr3 =LCD_xres& 0x3ff;        //OFFSIZE[21:11]:保存LCD上一行结尾和下一行开头的地址之间的差
                               //PAGEWIDTH [10:0]:保存LCD一行占的宽度(半字数为单位) /*4开启LCD,并注册fb_info: register_framebuffer()*/
/*4.1 直接在init函数中开启LCD(后面讲到电源管理,再来优化)*/
lcd_reg->lcdcon1 |=<<; //输出PWREN信号
lcd_reg->lcdcon5 |=<<; //允许PWREN信号
*GPBdat |=(0X1<<); //开背光 /*4.2 注册fb_info*/
register_framebuffer(my_lcd);
return ;
}
static int lcd_exit(void)
{
/* 1卸载内核中的fb_info*/
unregister_framebuffer(my_lcd);
/*2 控制LCDCON1关闭PWREN信号,关背光,iounmap注销地址*/
lcd_reg->lcdcon1 &=~(<<); // 关闭PWREN信号输出
lcd_reg->lcdcon5 &=~(<<); //禁止PWREN信号
*GPBdat &=~(0X1<<); //关背光
iounmap(GPBcon);
iounmap(GPCcon);
iounmap(GPDcon);
iounmap(GPGcon); /*3.释放DMA缓存地址dma_free_writecombine()*/
dma_free_writecombine(,my_lcd->screen_size,my_lcd->screen_base,my_lcd->fix.smem_start); /*4.释放注册的fb_info*/
framebuffer_release(my_lcd); return ;
} module_init(lcd_init);
module_exit(lcd_exit);
MODULE_LICENSE("GPL");

2.重新编译内核,去掉默认的LCD

make menuconfig ,进入menu菜单重新设置内核参数:

进入Device Drivers-> Graphics support:
<M> S3C2410 LCD framebuffer support //将自带的LCD驱动设为模块, 不编进内核中

然后make uImage 编译内核

make modules 编译模块

为什么要编译模块?

因为LCD驱动相关的文件也没有编进内核,而fb_ops里的成员fb_fillrect(), fb_copyarea(), fb_imageblit()用的都是drivers/video下面的3个文件,所以需要这3个的.ko模块,如下图所示:

16.Linux-LCD驱动(详解)

3.挂载驱动

将编译好的LCD驱动模块 和drivers/video里的3个.ko模块 放入nfs文件系统目录中

然后烧写内核, 先装载3个/drivers/video下编译好的模块,再来装载LCD驱动模块

挂载LCD驱动后, 如下图,可以通过  ls -l /dev/fb*   命令查看已挂载的LCD设备节点:

16.Linux-LCD驱动(详解)

4.测试运行

测试有两种:

(echo和cat命令详解入口地址: http://www.cnblogs.com/lifexy/p/7601122.html)

echo hello> /dev/tty1     // LCD上便显示hello字段

cat Makefile>/dev/tty1    // LCD上便显示Makeflie文件的内容

4.1使用上节的键盘驱动在LCD终端打印命令行

vi  /etc/inittab         //修改inittab, inittab:配置文件,用于启动init进程时,读取inittab

添加->tty1::askfirst:-/bin/sh   //将sh进程(命令行)输出到tty1里,也就是使LCD输出信息

然后重启,insmod装载3个/drivers/video下编译好的模块,再来insmod装载LCD驱动模块,tty1设备便有了,就能看到提示信息:

16.Linux-LCD驱动(详解)

如下图,我们insmod上一节的键盘驱动后,按下enter键,便能在LCD终端上操作linux了

(上一节的键盘驱动详解入口地址: http://www.cnblogs.com/lifexy/p/7553861.html)

16.Linux-LCD驱动(详解)

从上图可以看到按下enter键,它就启动了一个进程号772的-sh进程,如下图发现这个-sh的描述符都指向了tty1:

16.Linux-LCD驱动(详解)

下章学习:

18.Llinux-触摸驱动(详解)