tiny4412 --Uboot移植(3) 时钟

时间:2023-03-10 05:07:17
tiny4412 --Uboot移植(3)    时钟

开发环境:win10 64位 + VMware12 + Ubuntu14.04 32位

工具链:linaro提供的gcc-linaro-6.1.1-2016.08-x86_64_arm-linux-gnueabi

要移植的u-boot版本:u-boot-2016-11

Tiny4412开发板硬件版本为

  底板:  Tiny4412SDK 1312B

  核心板:Tiny4412 - 1306

 

1、时钟体系

exynos4412芯片时钟体系的介绍在《Exynos 4412 SCP_Users Manual_Ver.0.10.00_Preliminary.pdf》的第七章节。

据P447介绍:其有三个时钟源:

  1. XRTCXTI:32.768KZH,用于RTC时钟的实时时钟源。有XRTCXTI、XRTCXTO两个引脚,且之间需要10mΩ的并联电阻
  2. XXTI:12MHZ--50MZH,APLL、MPLL、VPLL和EPLL可使用此时钟作为适当模块的电源。可以仅用于测试,不用时接地
  3. XUSBXTI:24MZH。因为IROM设计基于24兆赫输入时钟。有XUSBXTI、XUSBXTO两个引脚,且之间需要5mΩ的并联电阻

在友善之臂tiny4412的开发板中, XRTCXTI 上没有外接晶振,系统时钟来源是XUSBXTI引脚上接的24MH 晶振,如下图所示:

tiny4412 --Uboot移植(3)    时钟

2、启动方式

 由P455页可看出XOM[0]接在FINPLL上,在结合第五章节内容

OM[5:1] 启动设备
5b’00010 SDMMC_CH2
5b’00100 eMMC44_CH4

可看出OM[0]=1;OM[1]=0;OM[4]=0;OM[5]=0;

OM[2]=1,OM[3]=0时,为SD卡启动;

OM[2]=0,OM[3]=1时,为eMMC启动;

而正是由于OM[1]=1;表明芯片选择XUSBXTI为时钟源

3、时钟代码

diff --git a/arch/arm/mach-exynos/Makefile b/arch/arm/mach-exynos/Makefile
index 5f8b6ba..
--- a/arch/arm/mach-exynos/Makefile
+++ b/arch/arm/mach-exynos/Makefile
@@ -, +, @@ ifdef CONFIG_SPL_BUILD
obj-$(CONFIG_EXYNOS5) += clock_init_exynos5.o
obj-$(CONFIG_EXYNOS5) += dmc_common.o dmc_init_ddr3.o
obj-$(CONFIG_EXYNOS4210)+= dmc_init_exynos4.o clock_init_exynos4.o
-obj-$(CONFIG_EXYNOS4412)+= dmc_init_exynos4.o clock_init_exynos4.o
+obj-$(CONFIG_EXYNOS4412)+= dmc_init_exynos4412.o clock_init_exynos4412.o obj-y += spl_boot.o tzpc.o
obj-y += lowlevel_init.o

在mach-exynos下,新建clock_init_exynos4412.c和exynos4412_setup.h

clock
/*
* Clock Initialization for board based on EXYNOS4412
*
* 2016
* Modified by AP0904225 <ap0904225@qq.com>
*
* Copyright (C) 2013 Samsung Electronics
* Rajeshwari Shinde <rajeshwari.s@samsung.com>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/ #include <common.h>
#include <config.h>
#include <asm/io.h>
#include <asm/arch/cpu.h>
#include <asm/arch/clk.h>
#include <asm/arch/clock.h>
#include "common_setup.h" #include "exynos4412_setup.h" /*
* system_clock_init: Initialize core clock and bus clock.
* void system_clock_init(void)
*/
void system_clock_init(void)
{
unsigned int set, clr, clr_src_cpu, clr_pll_con0, clr_src_dmc;
struct exynos4x12_clock *clk =(struct exynos4x12_clock *)
samsung_get_base_clock(); /*
* APLL= 1400 MHz
* MPLL=800 MHz
* EPLL=96 MHz
* VPLL=108 MHz
* freq (ARMCLK) = 1400 MHz at 1.3 V
* freq (ACLK_COREM0) = 350 MHz at 1.3V
* freq (ACLK_COREM1) = 188 MHz at 1.3 V
* freq (PERIPHCLK) = 1400 MHz at 1.3 V
* freq (ATCLK) = 214 MHz at 1.3 V
* freq (PCLK_DBG) = 107 MHz at 1.3 V
* freq (SCLK_DMC) = 400 MHz at 1.0 V
* freq (ACLK_DMCD) = 200 MHz at 1.0 V
* freq (ACLK_DMCP) = 100 MHz at 1.0 V
* freq (ACLK_ACP) = 200 MHz at 1.0 V
* freq (PCLK_ACP) = 100 MHz at 1.0 V
* freq (SCLK_C2C) = 400 MHz at 1.0 V
* freq (ACLK_C2C) = 200 MHz at 1.0 V
* freq (ACLK_GDL) = 200 MHz at 1.0 V
* freq (ACLK_GPL) = 100 MHz at 1.0 V
* freq (ACLK_GDR) = 200 MHz at 1.0 V
* freq (ACLK_GPR) = 100 MHz at 1.0 V
* freq (ACLK_400_MCUISP) = 400 MHz at 1.0 V
* freq (ACLK_200) = 160 MHz at 1.0 V
* freq (ACLK_100) = 100 MHz at 1.0 V
* freq (ACLK_160) = 160 MHz at 1.0 V
* freq (ACLK_133) = 133 MHz at 1.0 V
* freq (SCLK_ONENAND) = 160 MHz at 1.0 V
*/ /*
*before set system clocks,we switch system clocks src to FINpll
*/ /*
* Bit values: 0 ; 1
* MUX_APLL_SEL: FIN_PLL ; FOUT_APLL
* MUX_CORE_SEL: MOUT_APLL ; SCLK_MPLL
* MUX_HPM_SEL: MOUT_APLL ; SCLK_MPLL_USER_C
* MUX_MPLL_USER_SEL_C: FIN_PLL ; SCLK_MPLL
*/
clr_src_cpu = MUX_APLL_SEL() | MUX_CORE_SEL() |
MUX_HPM_SEL() | MUX_MPLL_USER_SEL_C();
set = MUX_APLL_SEL() | MUX_CORE_SEL() | MUX_HPM_SEL() |
MUX_MPLL_USER_SEL_C();
clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set);
/* Wait for mux change */
while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING)
continue; /*
******************************************************
* Step 1: Set Clock divider
******************************************************
*/ /*=====================set APLL related dividers(CMU_CPU)==============================*/
/*
* Set dividers for MOUTcore
* MOUTcore = MOUTapll = 1400 MHz
* SCLKapll = MOUTapll / (APLL_RATIO 1) = 700 MHz (DIVapll:APLL_RATIO=1)
* ARMCLK = MOUTcore / (ratio 1) = 1400 MHz (DIVcore:CORE_RATIO=0;DIVcore2:CORE2_RATIO=0)
* ACLK_COREM0 = ARMCLK / (COREM0_RATIO 1) = 355 MHz (DIVcorem0:COREM0_RATIO=3)
* ACLK_COREM1 = ARMCLK / (COREM1_RATIO 1) = 188 MHz (DIVcorem1:COREM1_RATIO=7)
* PERIPHCLK = ARMCLK / (PERIPH_RATIO 1) = 1400 MHz (DIVperiph:PERIPH_RATIO=0)
* OUTatb = MOUTcore / (ATB_RATIO 1) = 200 MHz (DIVatb:ATB_RATIO=6)
* ATCLK = OUTatb = 200 MHz
* PCLK_DBG = OUTatb / (PCLK_DBG_RATIO 1) = 100 MHz (PCLK_DBG_RATIO=1)
*/
clr = APLL_RATIO() |CORE_RATIO()| CORE2_RATIO()|
COREM0_RATIO() | COREM1_RATIO() |
PERIPH_RATIO() | ATB_RATIO() | PCLK_DBG_RATIO() ;
set = APLL_RATIO() |CORE_RATIO() | CORE2_RATIO() |
COREM0_RATIO() | COREM1_RATIO()|
PERIPH_RATIO() | ATB_RATIO() | PCLK_DBG_RATIO() ;
clrsetbits_le32(&clk->div_cpu0, clr, set); /* Wait for divider ready status */
while (readl(&clk->div_stat_cpu0) & DIV_STAT_CPU0_CHANGING)
continue; /* Set dividers for MOUThpm
* MOUThpm = MOUTapll = 1400 MHz
* OUTcopy = MOUThpm / (COPY_RATIO 1) = 200 (DIVcopy:COPY_RATIO=6)
* sclkhpm = OUTcopy / (HPM_RATIO 1) = 200 (DIVhpm:HPM_RATIO=0)
* ACLK_CORES = ARMCLK / (CORES_RATIO 1) = 233 (DIVcores:CORES_RATIO=5)
*/
clr = COPY_RATIO() | HPM_RATIO() | CORES_RATIO();
set = COPY_RATIO() | HPM_RATIO() | CORES_RATIO();
clrsetbits_le32(&clk->div_cpu1, clr, set); /* Wait for divider ready status */
while (readl(&clk->div_stat_cpu1) & DIV_STAT_CPU1_CHANGING)
continue; /*=====================set MPLL related dividers(CMU_DMC)==============================*/ /*
* Set CLK_DIV_DMC0
* MOUTmpll = SCLKmpll = 800 MHz
* MOUTdmc_bus = SCLKmpll = 800 MHz
* MOUTdphy = SCLKmpll = 800 MHz
*
* SCLK_DMC = MOUTdmc_bus / (DMC_RATIO 1) = 400MHz (DIVdmc:DMC_RATIO=1)
* ACLK_DMCD = SCLK_DMC / (DMCD_RATIO 1) = 200MHz (DIVdmcd:DMCD_RATIO=1)
* ACLK_DMCP = ACLK_DMCD / (DMCP_RATIO 1) = 100MHz (DIVdmcp:DMCP_RATIO=1)
* ACLK_ACP = MOUTdmc_bus / (ACP_RATIO 1) = 200MHz (DIVacp:ACP_RATIO=3)
* PCLK_ACP = ACLK_ACP / (ACP_PCLK_RATIO 1) = 100MHz (DIVacp_pclk:ACP_PCLK_RATIO=1)
* SCLK_DPHY = MOUTdphy / (DPHY_RATIO 1) = 400MHz (DIVdphy:DPHY_RATIO=1)
*/
clr = DMC_RATIO() | DMCD_RATIO() | DMCP_RATIO() |
ACP_RATIO() | ACP_PCLK_RATIO() | DPHY_RATIO();
set = DMC_RATIO() | DMCD_RATIO() | DMCP_RATIO() |
ACP_RATIO() | ACP_PCLK_RATIO() | DPHY_RATIO();
clrsetbits_le32(&clk->div_dmc0, clr, set); /* Wait for divider ready status */
while (readl(&clk->div_stat_dmc0) & DIV_STAT_DMC0_CHANGING)
continue; /*
* Set CLK_DIV_DMC1
* MOUTmpll = SCLKmpll = 800 MHz
* MOUTc2c = SCLKmpll = 800 Mhz
* MOUTpwi = SCLKmpll = 800 MHz
* MOUTg2d_acp = SCLKmpll = 800 MHz
*
* SCLK_C2C = MOUTc2c / (C2C_RATIO 1) = 400MHz (DIVc2c:C2C_RATIO=1)
* ACLK_C2C = SCLK_C2C / (C2C_ACLK_RATIO 1) = 200MHz (DIVc2c_aclk:C2C_ACLK_RATIO=1)
* SCLK_PWI = MOUTpwi / (PWI_RATIO 1) = 100MHz (DIVpwi:PWI_RATIO=7)
* SCLK_G2D_ACP = MOUTg2d_acp / (G2D_ACP_RATIO 1) = 200MHz (G2D_ACP_RATIO=3)
* IECDPMCLKEN = ACLK_DMCP/( DPM_RATIO 1) = 50MHz(DIVdpm:DPM_RATIO=1)
* IECDVSEMCLKEN = ACLK_DMCP/( DVSEM_RATIO 1) = 50MHz(DIVdvsem:DVSEM_RATIO=1)
*/
clr = C2C_RATIO() | C2C_ACLK_RATIO() | PWI_RATIO() |
G2D_ACP_RATIO() | DVSEM_RATIO() | DPM_RATIO();
set = C2C_RATIO() | C2C_ACLK_RATIO() | PWI_RATIO() |
G2D_ACP_RATIO() | DVSEM_RATIO() | DPM_RATIO();
clrsetbits_le32(&clk->div_dmc1, clr, set); /* Wait for divider ready status */
while (readl(&clk->div_stat_dmc1) & DIV_STAT_DMC1_CHANGING)
continue; /*=====================set CMU_TOP related dividers==============================*/
/*
* Set CLK_DIV_TOP
* SCLKmll_user_t = SCLKmpll = 800 MHz
* MOUTACLK_400_MC = SCLKmpll = 800 MHz
* MOUTACLK_400_MCUISP = MOUTACLK_400_MC/(ACLK_400_MCUISP_RATIO 1) = 400MHz (DIVaclk_400_mc:ACLK_400_MCUISP_RATIO=1)
* MOUTACLK_200 = SCLKmpll = 800 MHz
* ACLK_200 = MOUTACLK_200/(ACLK_200_RATIO 1) = 160MHz (DIVaclk_200:ACLK_200_RATIO=4)
* MOUTACLK_266_gps = SCLKmpll = 800 MHz
* ACLK_266_GPS = [MOUTACLK_266_GPS /(ACLK_266_GPS_RATIO 1)] = 266MHz (DIVaclk_266_gps:ACLK_266_GPS_RATIO=2)
* MOUTACLK_100 = SCLKmpll = 800 MHz
* ACLK_100 = [MOUTACLK_100/(ACLK_100_RATIO 1)] = 100MHz (DIVaclk_100:ACLK_100_RATIO=7)
* MOUTACLK_160 = SCLKmpll = 800 MHz
* ACLK_160 = [MOUTACLK_160 /(ACLK_160_RATIO 1)] = 160MHz (DIVaclk_160:ACLK_160_RATIO=4)
* MOUTACLK_133 = SCLKmpll = 800 MHz
* ACLK_133 = [MOUTACLK_133 /(ACLK_133_RATIO 1)] = 133MHz (DIVaclk_133:ACLK_133_RATIO=5)
* MOUTonenand = MOUTonenand_1 = ACLK_133MHz
* SCLK_ONENAND = [MOUTONENAND_1 /(ONENAND_RATIO 1)] = 66MHz (DIVonenand:ONENAND_RATIO=1)
*/
clr = ACLK_400_MCUISP_RATIO() | ACLK_200_RATIO() | ACLK_266_GPS_RATIO() |
ACLK_100_RATIO() | ACLK_160_RATIO() | ACLK_133_RATIO() |ONENAND_RATIO();
set = ACLK_400_MCUISP_RATIO() | ACLK_200_RATIO() | ACLK_266_GPS_RATIO() |
ACLK_100_RATIO() | ACLK_160_RATIO() | ACLK_133_RATIO() |ONENAND_RATIO();
clrsetbits_le32(&clk->div_top, clr, set); /* Wait for divider ready status */
while (readl(&clk->div_stat_top) & DIV_STAT_TOP_CHANGING)
continue; /*=====================set CMU_LEFTBUS related dividers==============================*/
/*
* Set CLK_DIV_LEFTBUS
* MOUTgdl = SCLKmpll = 800 MHz
* ACLK_GDL = MOUTgdl/(GDL_RATIO 1) = 200MHz (DIVgdl:GDL_RATIO=3)
* ACLK_GPL = ACLK_GDL/(GPL_RATIO 1) = 100MHz (DIVgpl:GPL_RATIO=1)
*/
clr = GDL_RATIO() | GPL_RATIO() ;
set = GDL_RATIO() | GPL_RATIO() ;
clrsetbits_le32(&clk->div_leftbus, clr, set); /* Wait for divider ready status */
while (readl(&clk->div_stat_leftbus) & DIV_STAT_LEFTBUS_CHANGING)
continue; /*=====================set CMU_RIGHTBUS related dividers==============================*/
/*
* Set CLK_DIV_RIGHTBUS
* MOUTgdr = SCLKmpll = 800 MHz
* ACLK_GDR = MOUTgdr/(GDR_RATIO 1) = 200MHz (DIVgdl:GDR_RATIO=3)
* ACLK_GPL = ACLK_GDL/(GPR_RATIO 1) = 100MHz (DIVgpl:GPR_RATIO=1)
*/
clr = GDR_RATIO() | GPR_RATIO() ;
set = GDR_RATIO() | GPR_RATIO() ;
clrsetbits_le32(&clk->div_rightbus, clr, set); /* Wait for divider ready status */
while (readl(&clk->div_stat_rightbus) & DIV_STAT_LEFTBUS_CHANGING)
continue; /*=====================set other dividers==============================*/ /* CLK_DIV_PERIL0 (UART0-4 dividers ) */
/*
* MOUTuart0-4 = SCLKMPLL_USER_T =800MHz
*
* SCLK_UARTx = MOUTuartX / (UARTx_RATIO 1) = 100MHz (DIVuart0-4:UARTx_RATIO=7)
*/
clr = UART0_RATIO() | UART1_RATIO() | UART2_RATIO() |
UART3_RATIO() | UART4_RATIO();
set = UART0_RATIO() | UART1_RATIO() | UART2_RATIO() |
UART3_RATIO() | UART4_RATIO();
clrsetbits_le32(&clk->div_peril0, clr, set); while (readl(&clk->div_stat_peril0) & DIV_STAT_PERIL0_CHANGING)
continue; /* CLK_DIV_FSYS1 */
clr = MMC0_RATIO() | MMC0_PRE_RATIO() | MMC1_RATIO() |
MMC1_PRE_RATIO();
/*
* For MOUTmmc0-3 = 800 MHz (MPLL)
*
* DOUTmmc1 = MOUTmmc1 / (ratio 1) = 100 (7)
* sclk_mmc1 = DOUTmmc1 / (ratio 1) = 50 (1)
* DOUTmmc0 = MOUTmmc0 / (ratio 1) = 100 (7)
* sclk_mmc0 = DOUTmmc0 / (ratio 1) = 50 (1)
*/
set = MMC0_RATIO() | MMC0_PRE_RATIO() | MMC1_RATIO() |
MMC1_PRE_RATIO(); clrsetbits_le32(&clk->div_fsys1, clr, set); /* Wait for divider ready status */
while (readl(&clk->div_stat_fsys1) & DIV_STAT_FSYS1_CHANGING)
continue; /* CLK_DIV_FSYS2 */
clr = MMC2_RATIO() | MMC2_PRE_RATIO() | MMC3_RATIO() |
MMC3_PRE_RATIO();
/*
* For MOUTmmc0-3 = 800 MHz (MPLL)
*
* DOUTmmc3 = MOUTmmc3 / (ratio 1) = 100 (7)
* sclk_mmc3 = DOUTmmc3 / (ratio 1) = 50 (1)
* DOUTmmc2 = MOUTmmc2 / (ratio 1) = 100 (7)
* sclk_mmc2 = DOUTmmc2 / (ratio 1) = 50 (1)
*/
set = MMC2_RATIO() | MMC2_PRE_RATIO() | MMC3_RATIO() |
MMC3_PRE_RATIO(); clrsetbits_le32(&clk->div_fsys2, clr, set); /* Wait for divider ready status */
while (readl(&clk->div_stat_fsys2) & DIV_STAT_FSYS2_CHANGING)
continue; /* CLK_DIV_FSYS3 */
clr = MMC4_RATIO() | MMC4_PRE_RATIO();
/*
* For MOUTmmc4 = 800 MHz (MPLL)
*
* DOUTmmc4 = MOUTmmc4 / (ratio 1) = 100 (7)
* sclk_mmc4 = DOUTmmc4 / (ratio 1) = 100 (0)
*/
set = MMC4_RATIO() | MMC4_PRE_RATIO(); clrsetbits_le32(&clk->div_fsys3, clr, set); /* Wait for divider ready status */
while (readl(&clk->div_stat_fsys3) & DIV_STAT_FSYS3_CHANGING)
continue; /*
* Step 2: Set APLL, MPLL, EPLL, VPLL locktime
*/
clr = PLL_LOCKTIME(); /*====== APLL locktime [APLL = 1400MHz : SDIV(0) , PDIV(3) , MDIV(175)] =====*/
set = PLL_LOCKTIME( PDIV() * );
clrsetbits_le32(&clk->apll_lock, clr, set); /*====== MPLL locktime [MPLL = 800MHz : SDIV(0) , PDIV(3) , MDIV(100)] =====*/
set = PLL_LOCKTIME( PDIV() * );
clrsetbits_le32(&clk->mpll_lock, clr, set); /*====== EPLL locktime [EPLL = 96MHz : SDIV(3) , PDIV(2) , MDIV(64)] =====*/
set = PLL_LOCKTIME( PDIV() * );
clrsetbits_le32(&clk->epll_lock, clr, set); /*====== VPLL locktime [VPLL = 108MHz : SDIV(3) , PDIV(2) , MDIV(72)] =====*/
set = PLL_LOCKTIME( PDIV() * );
clrsetbits_le32(&clk->vpll_lock, clr, set); /*
* Step 3: Set PLL PMS values and enable PLL
* 1.Set PDIV, MDIV, and SDIV values for APLL, MPLL, EPLL, VPLL
* 2.Turn on APLL, MPLL, EPLL, VPLL
*/ /**************** Set APLL to 1400MHz ****************/
/*APLL_CON1*/
clr = AFC() | LOCK_CON_DLY() | LOCK_CON_IN() |
LOCK_CON_OUT() |FEED_EN()| AFC_ENB() |
DCC_ENB() | BYPASS() |RESV0() | RESV1();
set = AFC() | LOCK_CON_DLY() | LOCK_CON_IN() |
LOCK_CON_OUT() |FEED_EN()| AFC_ENB() |
DCC_ENB() | BYPASS() |RESV0() | RESV1();
clrsetbits_le32(&clk->apll_con1, clr, set); /*APLL_CON0*/
clr_pll_con0 = SDIV() | PDIV() | MDIV() | FSEL();
set = SDIV() | PDIV() | MDIV() | FSEL() | PLL_ENABLE();
clrsetbits_le32(&clk->apll_con0, clr_pll_con0, set); /* Wait for PLL to be locked */
while (!(readl(&clk->apll_con0) & PLL_LOCKED_BIT))
continue; /**************** Set MPLL to 800MHz ****************/
/*MPLL_CON1*/
clr = AFC() | LOCK_CON_DLY() | LOCK_CON_IN() |
LOCK_CON_OUT() |FEED_EN()| AFC_ENB() |
DCC_ENB() | BYPASS() |RESV0() | RESV1();
set = AFC() | LOCK_CON_DLY() | LOCK_CON_IN() |
LOCK_CON_OUT() |FEED_EN()| AFC_ENB() |
DCC_ENB() | BYPASS() |RESV0() | RESV1();
clrsetbits_le32(&clk->mpll_con1, clr, set); /*MPLL_CON0*/
set = SDIV() | PDIV() | MDIV() | FSEL() | PLL_ENABLE();
clrsetbits_le32(&clk->mpll_con0, clr_pll_con0, set); /* Wait for PLL to be locked */
while (!(readl(&clk->mpll_con0) & PLL_LOCKED_BIT))
continue; /**************** Set EPLL to 96MHz ****************/
/*EPLL_CON2*/
clr = BYPASS_E_V() | SSCG_EN() |
AFC_ENB_E_V() |DCC_ENB_E_V() ;
set = BYPASS_E_V() | SSCG_EN() |
AFC_ENB_E_V() |DCC_ENB_E_V() ;
clrsetbits_le32(&clk->epll_con2, clr, set); /*EPLL_CON1*/
clr = K() | MFR() | MRR() | SEL_PF();
set = K() | MFR() | MRR() | SEL_PF();
clrsetbits_le32(&clk->epll_con1, clr, set); /*EPLL_CON0*/
set = SDIV() | PDIV() | MDIV() | PLL_ENABLE();
clrsetbits_le32(&clk->epll_con0, clr_pll_con0, set); /* Wait for PLL to be locked */
while (!(readl(&clk->epll_con0) & PLL_LOCKED_BIT))
continue; /**************** Set VPLL to 108MHz ****************/
/*VPLL_CON2*/
clr = BYPASS_E_V() | SSCG_EN() |
AFC_ENB_E_V() |DCC_ENB_E_V() ;
set = BYPASS_E_V() | SSCG_EN() |
AFC_ENB_E_V() |DCC_ENB_E_V() ;
clrsetbits_le32(&clk->vpll_con2, clr, set); /*VPLL_CON1*/
clr = K() | MFR() | MRR() | SEL_PF();
set = K() | MFR() | MRR() | SEL_PF();
clrsetbits_le32(&clk->vpll_con1, clr, set); /*VPLL_CON0*/
set = SDIV() | PDIV() | MDIV() | PLL_ENABLE();
clrsetbits_le32(&clk->vpll_con0, clr_pll_con0, set); /* Wait for PLL to be locked */
while (!(readl(&clk->vpll_con0) & PLL_LOCKED_BIT))
continue; /*
* Step 4: Select the PLL(APLL, MPLL, EPLL, VPLL ...) output clock
*/ /*************** Set CMU_UART0-4 clocks src MUX ***************/ /* CLK_SRC_PERIL0 */
clr = UART0_SEL() | UART1_SEL() | UART2_SEL() |
UART3_SEL() | UART4_SEL();
/*
* Set CLK_SRC_PERIL0 clocks src to MPLL
* src values: 0(XXTI); 1(XusbXTI); 2(SCLK_HDMI24M); 3(SCLK_USBPHY0);
* 5(SCLK_HDMIPHY); 6(SCLK_MPLL_USER_T); 7(SCLK_EPLL);
* 8(SCLK_VPLL)
*
* Set all to SCLK_MPLL_USER_T
*/
set = UART0_SEL() | UART1_SEL() | UART2_SEL() | UART3_SEL() |
UART4_SEL(); clrsetbits_le32(&clk->src_peril0, clr, set); /*************** Set CMU_LEFTBUS clocks src MUX ***************/
/* CLK_SRC_LEFTBUS */
clr = MUX_GDL_SEL() | MUX_MPLL_USER_SEL_L();
set = MUX_GDL_SEL() | MUX_MPLL_USER_SEL_L();
clrsetbits_le32(&clk->src_leftbus, clr, set); /* Wait for mux change */
sdelay(0x30000); /*************** Set CMU_RIGHTBUS clocks src MUX ***************/
/* CLK_SRC_RIGHTBUS */
clr = MUX_MPLL_USER_SEL_R() | MUX_GDR_SEL();
set = MUX_MPLL_USER_SEL_R() | MUX_GDR_SEL();
clrsetbits_le32(&clk->src_rightbus, clr, set); /* Wait for mux change */
sdelay(0x30000); /*************** Set CMU_TOP clocks src MUX ***************/
/* CLK_SRC_TOP0 */
clr = MUX_EPLL_SEL() | MUX_VPLL_SEL() | MUX_ACLK_200_SEL() |
MUX_ACLK_100_SEL() | MUX_ACLK_160_SEL() |
MUX_ACLK_133_SEL() | MUX_ONENAND_SEL() | MUX_ONENAND_1_SEL();
set = MUX_EPLL_SEL() | MUX_VPLL_SEL() | MUX_ACLK_200_SEL() |
MUX_ACLK_100_SEL() | MUX_ACLK_160_SEL() |
MUX_ACLK_133_SEL() | MUX_ONENAND_SEL() | MUX_ONENAND_1_SEL();
clrsetbits_le32(&clk->src_top0, clr, set); /* Wait for mux change */
sdelay(0x30000); /* CLK_SRC_TOP1 */
clr = MUX_MPLL_USER_SEL_T() | MUX_ACLK_400_MCUISP_SEL() |
MUX_ACLK_400_MCUISP_SUB_SEL() | MUX_ACLK_200_SUB_SEL() |
MUX_ACLK_266_GPS_SEL() | MUX_ACLK_266_GPS_SUB_SEL(); set = MUX_MPLL_USER_SEL_T() | MUX_ACLK_400_MCUISP_SEL() |
MUX_ACLK_400_MCUISP_SUB_SEL() | MUX_ACLK_200_SUB_SEL() |
MUX_ACLK_266_GPS_SEL() | MUX_ACLK_266_GPS_SUB_SEL();
clrsetbits_le32(&clk->src_top1, clr, set); /* Wait for mux change */
sdelay(0x30000); /*************** Set CMU_DMC clocks src MUX ***************/
/*
* Set CMU_DMC clocks src to MPLL
* Bit values: 0 ; 1
* MUX_C2C_SEL: SCLKMPLL ; SCLKAPLL
* MUX_DMC_BUS_SEL: SCLKMPLL ; SCLKAPLL
* MUX_DPHY_SEL: SCLKMPLL ; SCLKAPLL
* MUX_MPLL_SEL: FINPLL ; MOUT_MPLL_FOUT
* MUX_PWI_SEL: 0110 (MPLL); 0111 (EPLL); 1000 (VPLL); 0(XXTI)
* MUX_G2D_ACP0_SEL: SCLKMPLL ; SCLKAPLL
* MUX_G2D_ACP1_SEL: SCLKEPLL ; SCLKVPLL
* MUX_G2D_ACP_SEL: OUT_ACP0 ; OUT_ACP1
*/
clr_src_dmc = MUX_C2C_SEL() | MUX_DMC_BUS_SEL() |
MUX_DPHY_SEL() | MUX_MPLL_SEL() |
MUX_PWI_SEL() | MUX_G2D_ACP0_SEL() |
MUX_G2D_ACP1_SEL() | MUX_G2D_ACP_SEL();
set = MUX_MPLL_SEL() | MUX_C2C_SEL() | MUX_DMC_BUS_SEL() |
MUX_DPHY_SEL() | MUX_PWI_SEL() |
MUX_G2D_ACP0_SEL() | MUX_G2D_ACP1_SEL() | MUX_G2D_ACP_SEL();
clrsetbits_le32(&clk->src_dmc, clr_src_dmc, set); /* Wait for mux change */
while (readl(&clk->mux_stat_dmc) & MUX_STAT_DMC_CHANGING)
continue; /*************** Set CMU_CPU clocks src MUX ***************/
/* Set CMU_CPU clocks src to APLL
* Bit values: 0 ; 1
* MUX_APLL_SEL: FIN_PLL ; FOUT_APLL
* MUX_CORE_SEL: MOUT_APLL ; SCLK_MPLL
* MUX_HPM_SEL: MOUT_APLL ; SCLK_MPLL_USER_C
* MUX_MPLL_USER_SEL_C: FIN_PLL ; SCLK_MPLL
*/
clr_src_cpu = MUX_APLL_SEL() | MUX_CORE_SEL() |
MUX_HPM_SEL() | MUX_MPLL_USER_SEL_C();
set = MUX_APLL_SEL() | MUX_CORE_SEL() | MUX_HPM_SEL() |
MUX_MPLL_USER_SEL_C();
clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set); /* Wait for mux change */
while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING)
continue;
}
/*
* Copyright (C) 2014 Samsung Electronics
* Przemyslaw Marczak <p.marczak@samsung.com>
*
* SPDX-License-Identifier: GPL-2.0
*/ #ifndef __EXYNOS4412_SETUP__
#define __EXYNOS4412_SETUP__ /* A/M/E/V PLL_CON0 */
#define SDIV(x) ((x) & 0x7)
#define PDIV(x) (((x) & 0x3f) << 8)
#define MDIV(x) (((x) & 0x3ff) << 16)
#define FSEL(x) (((x) & 0x1) << 27)
#define PLL_LOCKED_BIT (0x1 << 29)
#define PLL_ENABLE(x) (((x) & 0x1) << 31) /* A/M PLL_CON1 */
#define AFC(x) ((x) & 0xf)
#define LOCK_CON_DLY(x) (((x) & 0xf) << 8)
#define LOCK_CON_IN(x) (((x) & 0x3) << 12)
#define LOCK_CON_OUT(x) (((x) & 0x3) << 14)
#define FEED_EN(x) (((x) & 0x1) << 16)
#define AFC_ENB(x) (((x) & 0x1) << 20)
#define DCC_ENB(x) (((x) & 0x1) << 21)
#define BYPASS(x) (((x) & 0x1) << 22)
#define RESV0(x) (((x) & 0x1) << 23)
#define RESV1(x) (((x) & 0x1) << 24) /* E/V PLL_CON1 */
#define K(x) ((x) & 0xffff)
#define MFR(x) (((x) & 0xff) << 16)
#define MRR(x) (((x) & 0x1f) << 24)
#define SEL_PF(x) (((x) & 0x3) << 9) /* E/V PLL_CON2 */
#define ICP_BOOST(x) ((x) & 0x3)
#define FSEL_E_V(x) (((x) & 0x1) << 2)
#define FVCO_EN(x) (((x) & 0x1) << 3)
#define BYPASS_E_V(x) (((x) & 0x1) << 4)
#define SSCG_EN(x) (((x) & 0x1) << 5)
#define AFC_ENB_E_V(x) (((x) & 0x1) << 6)
#define DCC_ENB_E_V(x) (((x) & 0x1) << 7)
#define EXTAFC(x) (((x) & 0x1f) << 8) #define PLL_LOCKTIME(x) ((x) & 0xffff) /* CLK_SRC_CPU */
#define MUX_APLL_SEL(x) ((x) & 0x1)
#define MUX_CORE_SEL(x) (((x) & 0x1) << 16)
#define MUX_HPM_SEL(x) (((x) & 0x1) << 20)
#define MUX_MPLL_USER_SEL_C(x) (((x) & 0x1) << 24) #define MUX_STAT_CHANGING 0x100 /* CLK_MUX_STAT_CPU */
#define APLL_SEL(x) ((x) & 0x7)
#define CORE_SEL(x) (((x) & 0x7) << 16)
#define HPM_SEL(x) (((x) & 0x7) << 20)
#define MPLL_USER_SEL_C(x) (((x) & 0x7) << 24)
#define MUX_STAT_CPU_CHANGING (APLL_SEL(MUX_STAT_CHANGING) | \
CORE_SEL(MUX_STAT_CHANGING) | \
HPM_SEL(MUX_STAT_CHANGING) | \
MPLL_USER_SEL_C(MUX_STAT_CHANGING)) /* CLK_DIV_CPU0 */
#define CORE_RATIO(x) ((x) & 0x7)
#define COREM0_RATIO(x) (((x) & 0x7) << 4)
#define COREM1_RATIO(x) (((x) & 0x7) << 8)
#define PERIPH_RATIO(x) (((x) & 0x7) << 12)
#define ATB_RATIO(x) (((x) & 0x7) << 16)
#define PCLK_DBG_RATIO(x) (((x) & 0x7) << 20)
#define APLL_RATIO(x) (((x) & 0x7) << 24)
#define CORE2_RATIO(x) (((x) & 0x7) << 28) /* CLK_DIV_STAT_CPU0 */
#define DIV_CORE(x) ((x) & 0x1)
#define DIV_COREM0(x) (((x) & 0x1) << 4)
#define DIV_COREM1(x) (((x) & 0x1) << 8)
#define DIV_PERIPH(x) (((x) & 0x1) << 12)
#define DIV_ATB(x) (((x) & 0x1) << 16)
#define DIV_PCLK_DBG(x) (((x) & 0x1) << 20)
#define DIV_APLL(x) (((x) & 0x1) << 24)
#define DIV_CORE2(x) (((x) & 0x1) << 28) #define DIV_STAT_CHANGING 0x1
#define DIV_STAT_CPU0_CHANGING (DIV_CORE(DIV_STAT_CHANGING) | \
DIV_COREM0(DIV_STAT_CHANGING) | \
DIV_COREM1(DIV_STAT_CHANGING) | \
DIV_PERIPH(DIV_STAT_CHANGING) | \
DIV_ATB(DIV_STAT_CHANGING) | \
DIV_PCLK_DBG(DIV_STAT_CHANGING) | \
DIV_APLL(DIV_STAT_CHANGING) | \
DIV_CORE2(DIV_STAT_CHANGING)) /* CLK_DIV_CPU1 */
#define COPY_RATIO(x) ((x) & 0x7)
#define HPM_RATIO(x) (((x) & 0x7) << 4)
#define CORES_RATIO(x) (((x) & 0x7) << 8) /* CLK_DIV_STAT_CPU1 */
#define DIV_COPY(x) ((x) & 0x7)
#define DIV_HPM(x) (((x) & 0x1) << 4)
#define DIV_CORES(x) (((x) & 0x1) << 8) #define DIV_STAT_CPU1_CHANGING (DIV_COPY(DIV_STAT_CHANGING) | \
DIV_HPM(DIV_STAT_CHANGING) | \
DIV_CORES(DIV_STAT_CHANGING)) /* CLK_SRC_DMC */
#define MUX_C2C_SEL(x) ((x) & 0x1)
#define MUX_DMC_BUS_SEL(x) (((x) & 0x1) << 4)
#define MUX_DPHY_SEL(x) (((x) & 0x1) << 8)
#define MUX_MPLL_SEL(x) (((x) & 0x1) << 12)
#define MUX_PWI_SEL(x) (((x) & 0xf) << 16)
#define MUX_G2D_ACP0_SEL(x) (((x) & 0x1) << 20)
#define MUX_G2D_ACP1_SEL(x) (((x) & 0x1) << 24)
#define MUX_G2D_ACP_SEL(x) (((x) & 0x1) << 28) /* CLK_MUX_STAT_DMC */
#define C2C_SEL(x) (((x)) & 0x7)
#define DMC_BUS_SEL(x) (((x) & 0x7) << 4)
#define DPHY_SEL(x) (((x) & 0x7) << 8)
#define MPLL_SEL(x) (((x) & 0x7) << 12)
/* #define PWI_SEL(x) (((x) & 0xf) << 16) - Reserved */
#define G2D_ACP0_SEL(x) (((x) & 0x7) << 20)
#define G2D_ACP1_SEL(x) (((x) & 0x7) << 24)
#define G2D_ACP_SEL(x) (((x) & 0x7) << 28) #define MUX_STAT_DMC_CHANGING (C2C_SEL(MUX_STAT_CHANGING) | \
DMC_BUS_SEL(MUX_STAT_CHANGING) | \
DPHY_SEL(MUX_STAT_CHANGING) | \
MPLL_SEL(MUX_STAT_CHANGING) |\
G2D_ACP0_SEL(MUX_STAT_CHANGING) | \
G2D_ACP1_SEL(MUX_STAT_CHANGING) | \
G2D_ACP_SEL(MUX_STAT_CHANGING)) /* CLK_DIV_DMC0 */
#define ACP_RATIO(x) ((x) & 0x7)
#define ACP_PCLK_RATIO(x) (((x) & 0x7) << 4)
#define DPHY_RATIO(x) (((x) & 0x7) << 8)
#define DMC_RATIO(x) (((x) & 0x7) << 12)
#define DMCD_RATIO(x) (((x) & 0x7) << 16)
#define DMCP_RATIO(x) (((x) & 0x7) << 20) /* CLK_DIV_STAT_DMC0 */
#define DIV_ACP(x) ((x) & 0x1)
#define DIV_ACP_PCLK(x) (((x) & 0x1) << 4)
#define DIV_DPHY(x) (((x) & 0x1) << 8)
#define DIV_DMC(x) (((x) & 0x1) << 12)
#define DIV_DMCD(x) (((x) & 0x1) << 16)
#define DIV_DMCP(x) (((x) & 0x1) << 20) #define DIV_STAT_DMC0_CHANGING (DIV_ACP(DIV_STAT_CHANGING) | \
DIV_ACP_PCLK(DIV_STAT_CHANGING) | \
DIV_DPHY(DIV_STAT_CHANGING) | \
DIV_DMC(DIV_STAT_CHANGING) | \
DIV_DMCD(DIV_STAT_CHANGING) | \
DIV_DMCP(DIV_STAT_CHANGING)) /* CLK_DIV_DMC1 */
#define G2D_ACP_RATIO(x) ((x) & 0xf)
#define C2C_RATIO(x) (((x) & 0x7) << 4)
#define PWI_RATIO(x) (((x) & 0xf) << 8)
#define C2C_ACLK_RATIO(x) (((x) & 0x7) << 12)
#define DVSEM_RATIO(x) (((x) & 0x7f) << 16)
#define DPM_RATIO(x) (((x) & 0x7f) << 24) /* CLK_DIV_STAT_DMC1 */
#define DIV_G2D_ACP(x) ((x) & 0x1)
#define DIV_C2C(x) (((x) & 0x1) << 4)
#define DIV_PWI(x) (((x) & 0x1) << 8)
#define DIV_C2C_ACLK(x) (((x) & 0x1) << 12)
#define DIV_DVSEM(x) (((x) & 0x1) << 16)
#define DIV_DPM(x) (((x) & 0x1) << 24) #define DIV_STAT_DMC1_CHANGING (DIV_G2D_ACP(DIV_STAT_CHANGING) | \
DIV_C2C(DIV_STAT_CHANGING) | \
DIV_PWI(DIV_STAT_CHANGING) | \
DIV_C2C_ACLK(DIV_STAT_CHANGING) | \
DIV_DVSEM(DIV_STAT_CHANGING) | \
DIV_DPM(DIV_STAT_CHANGING)) /* CLK_DIV_TOP */
#define ACLK_400_MCUISP_RATIO(x) (((x) & 0x7) << 24)
#define ACLK_266_GPS_RATIO(x) (((x) & 0x7) << 20)
#define ONENAND_RATIO(x) (((x) & 0x7) << 16)
#define ACLK_133_RATIO(x) (((x) & 0x7) << 12)
#define ACLK_160_RATIO(x) (((x) & 0x7) << 8)
#define ACLK_100_RATIO(x) (((x) & 0xf) << 4)
#define ACLK_200_RATIO(x) ((x) & 0x7) #define DIV_STAT_TOP_CHANGING (ACLK_400_MCUISP_RATIO(DIV_STAT_CHANGING) | \
ACLK_266_GPS_RATIO(DIV_STAT_CHANGING) | \
ONENAND_RATIO(DIV_STAT_CHANGING) | \
ACLK_133_RATIO(DIV_STAT_CHANGING) | \
ACLK_160_RATIO(DIV_STAT_CHANGING) | \
ACLK_100_RATIO(DIV_STAT_CHANGING) | \
ACLK_200_RATIO(DIV_STAT_CHANGING)) /* CLK_SRC_TOP0 */
#define MUX_ONENAND_SEL(x) (((x) & 0x1) << 28)
#define MUX_ACLK_133_SEL(x) (((x) & 0x1) << 24)
#define MUX_ACLK_160_SEL(x) (((x) & 0x1) << 20)
#define MUX_ACLK_100_SEL(x) (((x) & 0x1) << 16)
#define MUX_ACLK_200_SEL(x) (((x) & 0x1) << 12)
#define MUX_VPLL_SEL(x) (((x) & 0x1) << 8)
#define MUX_EPLL_SEL(x) (((x) & 0x1) << 4)
#define MUX_ONENAND_1_SEL(x) ((x) & 0x1) /* CLK_MUX_STAT_TOP */
#define ONENAND_SEL(x) (((x) & 0x3) << 28)
#define ACLK_133_SEL(x) (((x) & 0x3) << 24)
#define ACLK_160_SEL(x) (((x) & 0x3) << 20)
#define ACLK_100_SEL(x) (((x) & 0x3) << 16)
#define ACLK_200_SEL(x) (((x) & 0x3) << 12)
#define VPLL_SEL(x) (((x) & 0x3) << 8)
#define EPLL_SEL(x) (((x) & 0x3) << 4)
#define ONENAND_1_SEL(x) ((x) & 0x3) /* CLK_SRC_TOP1 */
#define MUX_ACLK_400_MCUISP_SUB_SEL(x) (((x) & 0x1) << 24)
#define MUX_ACLK_200_SUB_SEL(x) (((x) & 0x1) << 20)
#define MUX_ACLK_266_GPS_SUB_SEL(x) (((x) & 0x1) << 16)
#define MUX_MPLL_USER_SEL_T(x) (((x) & 0x1) << 12)
#define MUX_ACLK_400_MCUISP_SEL(x) (((x) & 0x1) << 8)
#define MUX_ACLK_266_GPS_SEL(x) (((x) & 0x1) << 4) /* CLK_MUX_STAT_TOP1 */
#define ACLK_400_MCUISP_SUB_SEL(x) (((x) & 0x3) << 24)
#define ACLK_200_SUB_SEL(x) (((x) & 0x3) << 20)
#define ACLK_266_GPS_SUB_SEL(x) (((x) & 0x3) << 16)
#define MPLL_USER_SEL_T(x) (((x) & 0x3) << 12)
#define ACLK_400_MCUISP_SEL(x) (((x) & 0x3) << 8)
#define ACLK_266_GPS_SEL(x) (((x) & 0x3) << 4) /*CLK_DIV_LEFTBUS*/
#define GDL_RATIO(x) ((x) & 0x7)
#define GPL_RATIO(x) (((x) & 0x7) << 4) #define DIV_STAT_LEFTBUS_CHANGING (GDL_RATIO(DIV_STAT_CHANGING) | \
GPL_RATIO(DIV_STAT_CHANGING) )
/* CLK_SRC_LEFTBUS */
#define MUX_MPLL_USER_SEL_L(x) (((x) & 0x1) << 4)
#define MUX_GDL_SEL(x) ((x) & 0x1) /* CLK_MUX_STAT_LEFTBUS */
#define MPLL_USER_SEL_L(x) (((x) & 0x3) << 4)
#define GDL_SEL(x) ((x) & 0x3) /*CLK_DIV_RIGHTBUS*/
#define GDR_RATIO(x) ((x) & 0x7)
#define GPR_RATIO(x) (((x) & 0x7) << 4) #define DIV_STAT_RIGHTBUS_CHANGING (GDR_RATIO(DIV_STAT_CHANGING) | \
GPR_RATIO(DIV_STAT_CHANGING) ) /* CLK_SRC_RIGHTBUS */
#define MUX_MPLL_USER_SEL_R(x) (((x) & 0x1) << 4)
#define MUX_GDR_SEL(x) ((x) & 0x1) /* CLK_MUX_STAT_RIGHTBUS */
#define MPLL_USER_SEL_R(x) (((x) & 0x3) << 4)
#define GDR_SEL(x) ((x) & 0x3) /* Set CLK_SRC_PERIL0 */
#define UART4_SEL(x) (((x) & 0xf) << 16)
#define UART3_SEL(x) (((x) & 0xf) << 12)
#define UART2_SEL(x) (((x) & 0xf) << 8)
#define UART1_SEL(x) (((x) & 0xf) << 4)
#define UART0_SEL(x) ((x) & 0xf) /* Set CLK_DIV_PERIL0 */
#define UART4_RATIO(x) (((x) & 0xf) << 16)
#define UART3_RATIO(x) (((x) & 0xf) << 12)
#define UART2_RATIO(x) (((x) & 0xf) << 8)
#define UART1_RATIO(x) (((x) & 0xf) << 4)
#define UART0_RATIO(x) ((x) & 0xf) /* Set CLK_DIV_STAT_PERIL0 */
#define DIV_UART4(x) (((x) & 0x1) << 16)
#define DIV_UART3(x) (((x) & 0x1) << 12)
#define DIV_UART2(x) (((x) & 0x1) << 8)
#define DIV_UART1(x) (((x) & 0x1) << 4)
#define DIV_UART0(x) ((x) & 0x1) #define DIV_STAT_PERIL0_CHANGING (DIV_UART4(DIV_STAT_CHANGING) | \
DIV_UART3(DIV_STAT_CHANGING) | \
DIV_UART2(DIV_STAT_CHANGING) | \
DIV_UART1(DIV_STAT_CHANGING) | \
DIV_UART0(DIV_STAT_CHANGING)) /* CLK_DIV_FSYS1 */
#define MMC0_RATIO(x) ((x) & 0xf)
#define MMC0_PRE_RATIO(x) (((x) & 0xff) << 8)
#define MMC1_RATIO(x) (((x) & 0xf) << 16)
#define MMC1_PRE_RATIO(x) (((x) & 0xff) << 24) /* CLK_DIV_STAT_FSYS1 */
#define DIV_MMC0(x) ((x) & 1)
#define DIV_MMC0_PRE(x) (((x) & 1) << 8)
#define DIV_MMC1(x) (((x) & 1) << 16)
#define DIV_MMC1_PRE(x) (((x) & 1) << 24) #define DIV_STAT_FSYS1_CHANGING (DIV_MMC0(DIV_STAT_CHANGING) | \
DIV_MMC0_PRE(DIV_STAT_CHANGING) | \
DIV_MMC1(DIV_STAT_CHANGING) | \
DIV_MMC1_PRE(DIV_STAT_CHANGING)) /* CLK_DIV_FSYS2 */
#define MMC2_RATIO(x) ((x) & 0xf)
#define MMC2_PRE_RATIO(x) (((x) & 0xff) << 8)
#define MMC3_RATIO(x) (((x) & 0xf) << 16)
#define MMC3_PRE_RATIO(x) (((x) & 0xff) << 24) /* CLK_DIV_STAT_FSYS2 */
#define DIV_MMC2(x) ((x) & 0x1)
#define DIV_MMC2_PRE(x) (((x) & 0x1) << 8)
#define DIV_MMC3(x) (((x) & 0x1) << 16)
#define DIV_MMC3_PRE(x) (((x) & 0x1) << 24) #define DIV_STAT_FSYS2_CHANGING (DIV_MMC2(DIV_STAT_CHANGING) | \
DIV_MMC2_PRE(DIV_STAT_CHANGING) | \
DIV_MMC3(DIV_STAT_CHANGING) | \
DIV_MMC3_PRE(DIV_STAT_CHANGING)) /* CLK_DIV_FSYS3 */
#define MMC4_RATIO(x) ((x) & 0x7)
#define MMC4_PRE_RATIO(x) (((x) & 0xff) << 8) /* CLK_DIV_STAT_FSYS3 */
#define DIV_MMC4(x) ((x) & 0x1)
#define DIV_MMC4_PRE(x) (((x) & 0x1) << 8) #define DIV_STAT_FSYS3_CHANGING (DIV_MMC4(DIV_STAT_CHANGING) | \
DIV_MMC4_PRE(DIV_STAT_CHANGING)) #endif /*__EXYNOS4412_SETUP__ */

这块非常重要,配置不好会涉及到后面驱动移植。还需多注意。