HDU - 1540 线段树的合并

时间:2022-09-12 19:41:55

这个题题意我大概解释一下,就是一开始一条直线,上面的点全是联通的,有三种操作

1.操作D把从左往右第x个村庄摧毁,然后断开两边的联通。

2.询问Q节点相联通的最长长度

3.把最后破坏的村庄重建。

这个其实也是非常典型的线段树区间合并,正好可以学一下。

我们给线段树的结点赋予5个值,l 区间左端点, r 区间右端点, ls从左端点开始的最大连续个数(左连续),rs从右端点开始最大的连续个数,ms这个节点所表示的区间内部,最大的连续个数。

然后我们考虑建树,由于最开始是相通的,因此这些值初始为r-l+1

然后常规操作单点修改,现在考试如何维护的:

首先是左儿子节点的左连续传给父节点的左连续,右儿子的右连续传给父节点的右连续

然后是维护父节点的最大连续,父节点的最大连续有可能由三个部分得到:两个儿子节点的分离的最大连续,以及合并左儿子的右连续和右儿子的左连续。因此把这三个值的最大值拿出来即可。

然后考虑询问:

如果询问到叶节点,或者区间内部最大的连续区间为0(代表区间内全是0)或者区间值等于区间长度(区间满了)这些可以直接退出循环。

让后我们考虑询问分裂的时候的问题,如果我们询问的点在树的左边,我们会发现有两种情况:

如果这个点是大于在树的左儿子的右连续的左边界,意味着这个点联通着树的右节点,我们需要在询问左节点的同时,加上右节点的右连续,即t>=tree[L(root)].r-tree[L(root)].rs+1

否则我们只需要访问左节点,继续询问即可。

反之也是如此,从而实现了线段树的分裂和合并

#include<iostream>
#include<string.h>
#include<algorithm>
#include<stdio.h>
using namespace std;
const int maxx = 1e5+;
int s[maxx];
inline int L(int r){return r<<;};
inline int R(int r){return r<<|;};
inline int MID(int l,int r){return (l+r)>>;};
struct node{
int l,r;
int ls,rs,ms;//左段开始最大连续区间,右端开始最大连续区间,节点区间内最大连续区间
}tree[maxx<<];
void buildtree(int root,int l,int r){
tree[root].l=l;
tree[root].r=r;
tree[root].ls=(r-l+);
tree[root].rs=(r-l+);
tree[root].ms=(r-l+);
if(l==r){
return;
}
int mid=MID(l,r);
buildtree(L(root),l,mid);
buildtree(R(root),mid+,r);
}
void update(int root,int t,int op){
int l=tree[root].l;
int r=tree[root].r;
if(l==r)//到叶节点
{
if (op==){//如果是销毁操作
tree[root].ls=tree[root].rs=tree[root].ms=;
}else{
tree[root].ls=tree[root].rs=tree[root].ms=;//恢复
}
return;
}
int mid=MID(l,r);
if (t<=mid){
update(L(root),t,op);
}else{
update(R(root),t,op);
}
tree[root].ls=tree[L(root)].ls;//把左儿子节点的左连续传给父亲节点
tree[root].rs=tree[R(root)].rs;//把右儿子节点的右连续传给父亲节点
tree[root].ms=max(max(tree[L(root)].ms,tree[R(root)].ms),tree[L(root)].rs+tree[R(root)].ls);
//父亲节点区间内的最大连续是由三部分构成,左右儿子的最大连续,以及左儿子的最大右连续加上右儿子的最大左连续
if (tree[L(root)].ls == tree[L(root)].r-tree[L(root)].l+)//如果左儿子区间满了,
tree[root].ls+=tree[R(root)].ls;//节点的左连续应该加上右儿子的左连续
if (tree[R(root)].rs == tree[R(root)].r-tree[R(root)].l+)//同理右儿子节点满了
tree[root].rs+=tree[L(root)].rs;//节点的右连续应该加上左儿子的右连续
}
int query(int root,int t)
{
int l=tree[root].l;
int r=tree[root].r;
if(l==r || tree[root].ms == || tree[root].ms==r-l+){
//到达一个叶子节点//或者里面全是呗摧毁的点//或者是区间已满的点
return tree[root].ms;
}
int mid=MID(l,r);
if (t<=mid)
{
if(t>=tree[L(root)].r-tree[L(root)].rs+)//t节点在看左子树,tree[2*i].r-tree[2*i].rs+1代表左子树右边连续区间的左边界值,如果t在左子树的右区间内,则要看右子树的左区间有多长并返回
return query(L(root),t)+query(R(root),mid+);
else
query(L(root),t);//如果不在左子树的右边界内,则只需要看左子树
}else
{
if (t<=tree[R(root)].l+tree[R(root)].ls-)//看右子树的左连续的右边界,如果t在在这个范围内,需要再次访问其从左儿子右边界开始的右连续从mid开始
return query(R(root),t)+query(L(root),mid);
else
return query(R(root),t);
}
}
int main(){
int n,m;
while(~scanf("%d%d",&n,&m)){
buildtree(,,n);
char op;
int tmp;
int top;
while(m--){
scanf(" %c",&op);
if (op=='D'){
scanf("%d",&tmp);
s[top++]=tmp;
update(,tmp,);
}else if(op=='Q'){
scanf("%d",&tmp);
printf("%d\n",query(,tmp));
}else
{
if(tmp>)
{
tmp=s[--top];
update(,tmp,);
}
}
}
}
return ;
}