POJ3169:Layout(差分约束)

时间:2021-11-19 08:07:14

http://poj.org/problem?id=3169

题意:

一堆牛在一条直线上按编号站队,在同一位置可以有多头牛并列站在一起,但编号小的牛所占的位置不能超过编号大的牛所占的位置,这里用d[i]表示编 号为i的牛所处的位置,即要满足d[i]-d[i+1]<=0,同时每两头牛之间有以下两种关系(对于输入的a b d来说):
            1>如果是喜欢关系:即需要满足d[b]-d[a]<=d
            2>如果是讨厌关系:即需要满足d[b]-a[a]>=d ……> d[a]-d[b]<=-d
   由于题目要求队伍的最大可能长度,即求满足以下三个约束条件的最大值,,由于此处是求最大值,故用Bellman_Ford算法求约束图的最短路径.
            1>对于ML有:d[b]-d[a]<=d
            2>对于MD有:d[a]-d[b]<=-d
            3>对于n个顶点的约束图有:s[i]-s[i+1]<=0(隐含条件)
    题目的解为:有负环输出-1,d[n]无穷大输出-2,其他输出dist[n].
   
在差分约束系统中如果题目要求是求最小值,就将约束条件转化为">="形式,然后用Bellman_Ford算法求解约束图的最长路径,如果题目要
求的是最大值,就将约束条件转化为"<="形式,然后用Bellman_Ford算法求解约束图的最短路径.

PS:
(1)INF不能开得太大,可能会溢出;
(2)数组尽量开小,不然会比较慢

如果有负环,输出-1,如果N可以无限远,即1与N不连通,输出-2,其他情况输出1与N的最大距离。(最短路)

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <queue>
#define N 1000001
using namespace std;
int n,m,k,tt;
int head[],v[],dis[];
struct node
{
int x,y,z;
int next;
} q[];
void init()
{
memset(head,-,sizeof(head));
tt=;
}
void add(int xx,int yy,int zz)
{
q[tt].x=xx;
q[tt].y=yy;
q[tt].z=zz;
q[tt].next=head[xx];
head[xx]=tt++;
}
void SPFA()
{
for(int i=; i<=n; i++)
{
dis[i]=N;
v[i]=;
}
dis[]=;
v[]=;
queue<int>p;
p.push();
while(!p.empty())
{
int ff=p.front();
p.pop();
v[ff]=;
for(int i=head[ff]; i!=-; i=q[i].next)
{
if(dis[q[i].y]>dis[ff]+q[i].z)
{
dis[q[i].y]=dis[ff]+q[i].z;
if(dis[q[i].y]<)//不存在最短路(这题是实际问题,不会出现负边//或者根据有顶点入队列的次数大于n)
{
printf("-1\n");
return ;
}
if(!v[q[i].y])
{
v[q[i].y]=;
p.push(q[i].y);
}
}
}
}
if(dis[n]==N) printf("-2\n");//1到n没有路
else printf("%d\n",dis[n]);
return ;
}
int main()
{
int xx,yy,zz;
while(scanf("%d%d%d",&n,&m,&k)!=EOF)
{
init();
for(int i=; i<=m; i++)
{
scanf("%d%d%d",&xx,&yy,&zz);
add(xx,yy,zz);
}
for(int i=; i<=k; i++)
{
scanf("%d%d%d",&xx,&yy,&zz);
add(yy,xx,-zz);
}
for(int i=; i<n; i++)//隐含条件
{
add(i+,i,);
}
SPFA();
}
return ;
}