二分图最大匹配的König定理及其证明 (最小覆盖集)

时间:2021-05-21 06:14:10

转自:http://www.matrix67.com/blog/archives/116

一直在困惑于最大匹配数和最小覆盖集相等的关系,在Matrix67的blog里找到一篇写得顶好的证明其两者关系。

反反复复读了好多次,里面加上一些自己的理解(PS部分)。如果我的理解没有帮助,那建议你认真地多读几遍原文。

二分图最大匹配的König定理及其证明

    如果你看不清楚第二个字母,下面有一个大号字体版本:

二分图最大匹配的König定理及其证明

    本文将是这一系列里最短的一篇,因为我只打算把König定理证了,其它的废话一概没有。
    以下五个问题我可能会在以后的文章里说,如果你现在很想知道的话,网上去找找答案:
    1. 什么是二分图;
    2. 什么是二分图的匹配;
    3. 什么是匈牙利算法;(http://www.matrix67.com/blog/article.asp?id=41)
    4. König定理证到了有什么用;
    5. 为什么o上面有两个点。

    König定理是一个二分图中很重要的定理,它的意思是,一个二分图中的最大匹配数等于这个图中的最小点覆盖数。如果你还不知道什么是最小点覆盖,我也在这里说一下:假如选了一个点就相当于覆盖了以它为端点的所有边,你需要选择最少的点来覆盖所有的边。比如,下面这个图中的最大匹配和最小点覆盖已分别用蓝色和红色标注。它们都等于3。这个定理相信大多数人都知道,但是网络上给出的证明并不多见。有一些网上常见的“证明”明显是错误的。因此,我在这里写一下这个定理的证明,希望对大家有所帮助。

二分图最大匹配的König定理及其证明 (最小覆盖集)

    假如我们已经通过匈牙利算法求出了最大匹配(假设它等于M),下面给出的方法可以告诉我们,选哪M个点可以覆盖所有的边。
    匈牙利算法需要我们从右边的某个没有匹配的点,走出一条使得“一条没被匹配、一条已经匹配过,再下一条又没匹配这样交替地出现”的路(交错轨,增广路)。但是,现在我们已经找到了最大匹配,已经不存在这样的路了。换句话说,我们能寻找到很多可能的增广路,但最后都以找不到“终点是还没有匹配过的点”而失败。我们给所有这样的点打上记号:从右边的所有没有匹配过的点出发,按照增广路的“交替出现”的要求可以走到的所有点(最后走出的路径是很多条不完整的增广路)。那么这些点组成了最小覆盖点集:右边所有没有打上记号的点,加上左边已经有记号的点。看图,右图中展示了两条这样的路径,标记了一共6个点(用 “√”表示)。那么,用红色圈起来的三个点就是我们的最小覆盖点集。
    首先,为什么这样得到的点集点的个数恰好有M个呢?答案很简单,因为每个点都是某个匹配边的其中一个端点。如果右边的哪个点是没有匹配过的,那么它早就当成起点被标记了;如果左边的哪个点是没有匹配过的,那就走不到它那里去(否则就找到了一条完整的增广路)(PS:本段前部分说明入选覆盖集的不会是右边非匹配点,也不会是左边非匹配点)。而一个匹配边又不可能左端点是标记了的,同时右端点是没标记的(不然的话右边的点就可以经过这条边到达了)(PS:说明不会重复计数;左端点被标记了,计数不会把其对应的右端点也算进去。)因此,最后我们圈起来的点与匹配边一一对应。
    其次,为什么这样得到的点集可以覆盖所有的边呢?答案同样简单。不可能存在某一条边,它的左端点是没有标记的,而右端点是有标记的。(PS:为什么只证明这种边不存在?因为有标记的左端点把与其相连的边都覆盖掉,无论右端点有没有标记;而与没有标记的左端点相连的边,是由没有标记的右端点覆盖掉;共4种情况,只要把当前这种情况证明为不可能存在,则说明覆盖点集可以覆盖所有的边。)原因如下:如果这条边不属于我们的匹配边,那么左端点就可以通过这条边到达(从而得到标记);如果这条边属于我们的匹配边,那么右端点不可能是一条路径的起点,于是它的标记只能是从这条边的左端点过来的(想想匹配的定义),左端点就应该有标记。
    最后,为什么这是最小的点覆盖集呢?这当然是最小的,不可能有比M还小的点覆盖集了,因为要覆盖这M条匹配边至少就需要M个点(再次回到匹配的定义)。
    证完了。
  
Matrix67原创
做人要厚到 转贴请注明出处