用反卷积(Deconvnet)可视化理解卷积神经网络还有使用tensorboard

时间:2022-08-09 04:11:09

作者:hjimce

一、相关理论

本篇博文主要讲解2014年ECCV上的一篇经典文献:《Visualizing and Understanding Convolutional Networks》,可以说是CNN领域可视化理解的开山之作,这篇文献告诉我们CNN的每一层到底学习到了什么特征,然后作者通过可视化进行调整网络,提高了精度。最近两年深层的卷积神经网络,进展非常惊人,在计算机视觉方面,识别精度不断的突破,CVPR上的关于CNN的文献一大堆。然而很多学者都不明白,为什么通过某种调参、改动网络结构等,精度会提高。可能某一天,我们搞CNN某个项目任务的时候,你调整了某个参数,结果精度飙升,但如果别人问你,为什么这样调参精度会飙升呢,你所设计的CNN到底学习到了什么牛逼的特征?(PS:之前领导一直鄙视我,要我解释CNN的每一层到底学习到了什么特征,解答不上来,被鄙视了一番,最后才去学了这篇文献)。

这篇文献的目的,就是要通过特征可视化,告诉我们如何通过可视化的角度,查看你的精度确实提高了,你设计CNN学习到的特征确实比较牛逼。这篇文献是经典必读文献,才发表了一年多,引用次数就已经达到了好几百,学习这篇文献,对于我们今后深入理解CNN,具有非常重要的意义。总之这篇文章,牛逼哄哄。

二、利用反卷积实现特征可视化

为了解释卷积神经网络为什么work,我们就需要解释CNN的每一层学习到了什么东西。为了理解网络中间的每一层,提取到特征,paper通过反卷积的方法,进行可视化。反卷积网络可以看成是卷积网络的逆过程。反卷积网络在文献《Adaptive deconvolutional networks for mid and high level feature learning》中被提出,是用于无监督学习的。然而本文的反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积网络模型,没有学习训练的过程。

反卷积可视化以各层得到的特征图作为输入,进行反卷积,得到反卷积结果,用以验证显示各层提取到的特征图。举个例子:假如你想要查看Alexnet 的conv5提取到了什么东西,我们就用conv5的特征图后面接一个反卷积网络,然后通过:反池化、反激活、反卷积,这样的一个过程,把本来一张13*13大小的特征图(conv5大小为13*13),放大回去,最后得到一张与原始输入图片一样大小的图片(227*227)。

1、反池化过程

我们知道,池化是不可逆的过程,然而我们可以通过记录池化过程中,最大激活值得坐标位置。然后在反池化的时候,只把池化过程中最大激活值所在的位置坐标的值激活,其它的值置为0,当然这个过程只是一种近似,因为我们在池化的过程中,除了最大值所在的位置,其它的值也是不为0的。刚好最近几天看到文献:《Stacked What-Where Auto-encoders》,里面有个反卷积示意图画的比较好,所有就截下图,用这篇文献的示意图进行讲解:

用反卷积(Deconvnet)可视化理解卷积神经网络还有使用tensorboard

以上面的图片为例,上面的图片中左边表示pooling过程,右边表示unpooling过程。假设我们pooling块的大小是3*3,采用max pooling后,我们可以得到一个输出神经元其激活值为9,pooling是一个下采样的过程,本来是3*3大小,经过pooling后,就变成了1*1大小的图片了。而upooling刚好与pooling过程相反,它是一个上采样的过程,是pooling的一个反向运算,当我们由一个神经元要扩展到3*3个神经元的时候,我们需要借助于pooling过程中,记录下最大值所在的位置坐标(0,1),然后在unpooling过程的时候,就把(0,1)这个像素点的位置填上去,其它的神经元激活值全部为0。再来一个例子:

用反卷积(Deconvnet)可视化理解卷积神经网络还有使用tensorboard

在max pooling的时候,我们不仅要得到最大值,同时还要记录下最大值得坐标(-1,-1),然后再unpooling的时候,就直接把(-1-1)这个点的值填上去,其它的激活值全部为0。

2、反激活

我们在Alexnet中,relu函数是用于保证每层输出的激活值都是正数,因此对于反向过程,我们同样需要保证每层的特征图为正值,也就是说这个反激活过程和激活过程没有什么差别,都是直接采用relu函数。

3、反卷积

对于反卷积过程,采用卷积过程转置后的滤波器(参数一样,只不过把参数矩阵水平和垂直方向翻转了一下),这一点我现在也不是很明白,估计要采用数学的相关理论进行证明。

最后可视化网络结构如下:

用反卷积(Deconvnet)可视化理解卷积神经网络还有使用tensorboard

网络的整个过程,从右边开始:输入图片-》卷积-》Relu-》最大池化-》得到结果特征图-》反池化-》Relu-》反卷积。到了这边,可以说我们的算法已经学习完毕了,其它部分是文献要解释理解CNN部分,可学可不学。

总的来说算法主要有两个关键点:1、反池化  2、反卷积,这两个源码的实现方法,需要好好理解。

三、理解可视化

特征可视化:一旦我们的网络训练完毕了,我们就可以进行可视化,查看学习到了什么东西。但是要怎么看?怎么理解,又是一回事了。我们利用上面的反卷积网络,对每一层的特征图进行查看。

1、特征可视化结果:

用反卷积(Deconvnet)可视化理解卷积神经网络还有使用tensorboard

总的来说,通过CNN学习后,我们学习到的特征,是具有辨别性的特征,比如要我们区分人脸和狗头,那么通过CNN学习后,背景部位的激活度基本很少,我们通过可视化就可以看到我们提取到的特征忽视了背景,而是把关键的信息给提取出来了。从layer 1、layer 2学习到的特征基本上是颜色、边缘等低层特征;layer 3则开始稍微变得复杂,学习到的是纹理特征,比如上面的一些网格纹理;layer 4学习到的则是比较有区别性的特征,比如狗头;layer 5学习到的则是完整的,具有辨别性关键特征。

2、特征学习的过程。作者给我们显示了,在网络训练过程中,每一层学习到的特征是怎么变化的,上面每一整张图片是网络的某一层特征图,然后每一行有8个小图片,分别表示网络epochs次数为:1、2、5、10、20、30、40、64的特征图:

用反卷积(Deconvnet)可视化理解卷积神经网络还有使用tensorboard

结果:(1)仔细看每一层,在迭代的过程中的变化,出现了sudden jumps;(2)从层与层之间做比较,我们可以看到,低层在训练的过程中基本没啥变化,比较容易收敛,高层的特征学习则变化很大。这解释了低层网络的从训练开始,基本上没有太大的变化,因为梯度弥散嘛。(3)从高层网络conv5的变化过程,我们可以看到,刚开始几次的迭代,基本变化不是很大,但是到了40~50的迭代的时候,变化很大,因此我们以后在训练网络的时候,不要着急看结果,看结果需要保证网络收敛。

3、图像变换。从文献中的图片5可视化结果,我们可以看到对于一张经过缩放、平移等操作的图片来说:对网络的第一层影响比较大,到了后面几层,基本上这些变换提取到的特征没什么比较大的变化。

个人总结:我个人感觉学习这篇文献的算法,不在于可视化,而在于学习反卷积网络,如果懂得了反卷积网络,那么在以后的文献中,你会经常遇到这个算法。大部分CNN结构中,如果网络的输出是一整张图片的话,那么就需要使用到反卷积网络,比如图片语义分割、图片去模糊、可视化、图片无监督学习、图片深度估计,像这种网络的输出是一整张图片的任务,很多都有相关的文献,而且都是利用了反卷积网络,取得了牛逼哄哄的结果。所以我觉得我学习这篇文献,更大的意义在于学习反卷积网络。

参考文献:

1、《Visualizing and Understanding Convolutional Networks》

2、《Adaptive deconvolutional networks for mid and high level feature learning》

3、《Stacked What-Where Auto-encoders》

用反卷积(Deconvnet)可视化理解卷积神经网络还有使用tensorboard的更多相关文章

  1. 第十四节,TensorFlow中的反卷积,反池化操作以及gradients的使用

    反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用 ...

  2. 详解卷积神经网络(CNN)

    详解卷积神经网络(CNN) 详解卷积神经网络CNN 概揽 Layers used to build ConvNets 卷积层Convolutional layer 池化层Pooling Layer 全 ...

  3. 学习Tensorflow,反卷积

    在深度学习网络结构中,各个层的类别可以分为这几种:卷积层,全连接层,relu层,pool层和反卷积层等.目前,在像素级估计和端对端学习问题中,全卷积网络展现了他的优势,里面有个很重要的层,将卷积后的f ...

  4. tensorflow 卷积/反卷积-池化/反池化操作详解

    Plese see this answer for a detailed example of how tf.nn.conv2d_backprop_input and tf.nn.conv2d_bac ...

  5. 对抗生成网络-图像卷积-mnist数据生成(代码) 1.tf.layers.conv2d(卷积操作) 2.tf.layers.conv2d_transpose(反卷积操作) 3.tf.layers.batch_normalize(归一化操作) 4.tf.maximum(用于lrelu) 5.tf.train_variable(训练中所有参数) 6.np.random.uniform(生成正态数据

    1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的 ...

  6. 深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在

    1. tf.nn.moments(x, axes=[0, 1, 2])  # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的fe ...

  7. 深度学习原理与框架- tf.nn.conv2d_transpose(反卷积操作) tf.nn.conv2d_transpose(进行反卷积操作) 对于stride的理解存在问题?

    反卷积操作: 首先对需要进行维度扩张的feature_map 进行补零操作,然后使用3*3的卷积核,进行卷积操作,使得其维度进行扩张,图中可以看出,2*2的feature经过卷积变成了4*4.    ...

  8. 反卷积(deconvolution)

    deconvolution讲解论文链接:https://arxiv.org/abs/1609.07009 关于conv和deconvoluton的另一个讲解链接:http://deeplearning ...

  9. 深度学习卷积网络中反卷积/转置卷积的理解 transposed conv/deconv

    搞明白了卷积网络中所谓deconv到底是个什么东西后,不写下来怕又忘记,根据参考资料,加上我自己的理解,记录在这篇博客里. 先来规范表达 为了方便理解,本文出现的举例情况都是2D矩阵卷积,卷积输入和核 ...

随机推荐

  1. CentOS7区域设置

    区域设置的配置文件在/etc/locale.conf,通过localectl命令进行设置: systemd服务在启动的时候读取区域配置文件,完成系统的设置. 命令的几个常用方法如下: 1 查看当前配置 ...

  2. 计算圆周率 Pi (π)值, 精确到小数点后 10000 位 只需要 30 多句代码

    大家都知道π=3.1415926……无穷多位, 历史上很多人都在计算这个数, 一直认为是一个非常复杂的问题.现在有了电脑, 这个问题就简单了.电脑可以利用级数计算出很多高精度的值, 有关级数的问题请参 ...

  3. Emit

    http://www.cnblogs.com/zhuweisky/archive/2008/09/20/1294666.html http://www.cnblogs.com/xiaoxiangfei ...

  4. 影响世界的IT

    MIT BBS上说微软电话面试的一道题就是"Who do you think is the best coder,and why?”.我觉得挺有意思的,也来凑个热闹.排名不分先后. 1.Bi ...

  5. 01_什么是数据结构以及C语言指针回顾

    一.数据结构是什么 如何把现实中大量而复杂的问题,以特定的数据类型和特定的数据存储结构保存到计算机的存储器中. 数据存储包括两方面:个体存储的集合.个体与个体之间的关系的存储 程序 = 算法 + 数据 ...

  6. PyCharm 2017.3 下载与安装

    微信公众号:compassblog 欢迎关注.转发,互相学习,共同进步! 有任何问题,请后台留言联系! 1.下载 (1).下载链接: https://www.jetbrains.com/pycharm ...

  7. IntentService用法

    IntentService 用完即走     IntentService,可以看做是Service和HandlerThread的结合体,在完成了使命之后会自动停止,适合需要在工作线程处理UI无关任务的 ...

  8. ORACLE INSTANCE与EM系统

    Emctl start dbconsole https://192.168.183.132:1158/em/ 复制到游览器进入到em 更改初始化参数值 静态参数: -只能在参数文件中更改 -必须重新启 ...

  9. 如何用IDEA http://localhost:8080/不带上项目名访问

    IDEA TOMCAT设置中把这里的项目名去掉即可

  10. kubeadm部署Kubernetes集群

    Preface 通过kubeadm管理工具部署Kubernetes集群,相对离线包的二进制部署集群方式而言,更为简单与便捷.以下为个人学习总结: 两者区别在于前者部署方式使得大部分集群组件(Kube- ...