http://www.lydsy.com/JudgeOnline/problem.php?id=1076
很容易想到方程
dp[i][j]表示抛出了i个宝物,已选宝物状态为j的期望最大得分
初始化dp[0][0]=0,其余都为负无穷
设宝物i的前提宝物集合为pre[i]
枚举第i次抛,当前已选宝物状态j,这一次抛出了第l个宝物
若 j&pre[l]==pre[l] 那么这个宝物就可以选,也可以不选
选,转移到dp[i+1][j|1<<l-1]
不选,转移到dp[i+1][j]
否则,这个宝物一定不能选,转移到dp[i+1][j]
那么问题来了,最后宝物状态集合是什么,最后输出什么?
Σ dp[n][s]/s ?
错误
因为 最后每种宝物状态出现的概率不一样
那就再递推个每种状态出现的概率?
尝试写了一发,
但状态出现的概率到后面会非常小非常小,小到让我存不了。。。
所以本思路GG
对了两个点,+递推出现概率的代码:
#include<cmath>
#include<cstdio>
#include<iostream>
#include<algorithm> using namespace std; int val[],pre[]; int bit[]; double dp[][<<];
double f[][<<];
bool vis[][<<]; const double eps=1e-; void read(int &x)
{
x=; int f=; char c=getchar();
while(!isdigit(c)) { if(c=='-') f=-; c=getchar(); }
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
x*=f;
} bool dcmp(double a,double b)
{
return fabs(a-b)<eps;
} int main()
{
int k,n;
read(k); read(n);
bit[]=;
for(int i=;i<=n;++i) bit[i]=bit[i-]<<;
int x;
for(int i=;i<=n;++i)
{
read(val[i]);
while()
{
read(x);
if(!x) break;
pre[i]+=bit[x-];
}
}
int s=bit[n];
vis[][]=true;
f[][]=;
for(int i=;i<k;++i)
for(int j=;j<s;++j)
if(vis[i][j])
{
for(int l=;l<=n;++l)
if((j&pre[l])==pre[l])
{
if((dp[i][j]+val[l])*f[i][j]/n>dp[i+][j|bit[l-]]*f[i+][j|bit[l-]])
{
dp[i+][j|bit[l-]]=dp[i][j]+val[l];
f[i+][j|bit[l-]]=f[i][j]/n;
vis[i+][j|bit[l-]]=true;
}
else if(dcmp((dp[i][j]+val[l])*f[i][j]/n,dp[i+][j|bit[l-]]*f[i+][j|bit[l-]]))
{
f[i+][j|bit[l-]]+=f[i][j]/n;
vis[i+][j|bit[l-]]=true;
}
}
}
double ans=;
for(int i=;i<s;++i) ans+=dp[k][i]*f[k][i];
printf("%.6lf",ans);
}
正解:倒推
dp[i][j] 表示抛了i个宝物,所选状态为j的最大期望得分
枚举这次抛出第l种宝物
能选,j&pre[l]==pre[l]
那么从选与不选里取最优解,dp[i][j]+=max(dp[i+1][j],dp[i+1][j|1<<l-1])
不能选 dp[i][j]+=dp[i+1][j]
对于dp[i][j] 来说,枚举n种可能抛出哪种宝物,概率是同样的
所以最后dp[i][j]/n 即是状态的期望得分
最后输出dp[n][0]
#include<cstdio>
#include<iostream> using namespace std; int val[],pre[]; int bit[]; double dp[][<<]; void read(int &x)
{
x=; int f=; char c=getchar();
while(!isdigit(c)) { if(c=='-') f=-; c=getchar(); }
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
x*=f;
} int main()
{
int k,n;
read(k); read(n);
bit[]=;
for(int i=;i<=n;++i) bit[i]=bit[i-]<<;
int x;
for(int i=;i<=n;++i)
{
read(val[i]);
while()
{
read(x);
if(!x) break;
pre[i]+=bit[x-];
}
}
int S=bit[n];
for(int i=k;i;--i)
for(int j=;j<S;++j)
{
for(int l=;l<=n;++l)
if((j&pre[l])==pre[l]) dp[i][j]+=max(dp[i+][j],dp[i+][j|bit[l-]]+val[l]);
else dp[i][j]+=dp[i+][j];
dp[i][j]/=n;
}
printf("%.6lf",dp[][]);
}
bzoj千题计划206:bzoj1076: [SCOI2008]奖励关的更多相关文章
-
BZOJ1076 [SCOI2008]奖励关 【状压dp + 数学期望】
1076: [SCOI2008]奖励关 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 3074 Solved: 1599 [Submit][Sta ...
-
[BZOJ1076][SCOI2008]奖励关 状压dp
1076: [SCOI2008]奖励关 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3070 Solved: 1595[Submit][Statu ...
-
bzoj1076: [SCOI2008]奖励关(期望dp+状压dp)
1076: [SCOI2008]奖励关 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2989 Solved: 1557[Submit][Statu ...
-
bzoj千题计划300:bzoj4823: [Cqoi2017]老C的方块
http://www.lydsy.com/JudgeOnline/problem.php?id=4823 讨厌的形状就是四联通图 且左右各连一个方块 那么破坏所有满足条件的四联通就好了 按上图方式染色 ...
-
BZOJ1076:[SCOI2008]奖励关(状压DP,期望)
Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的 ...
-
[BZOJ1076][SCOI2008]奖励关解题报告|状压DP
你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝 ...
-
Bzoj1076 [SCOI2008]奖励关
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1935 Solved: 1053 Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一 ...
-
BZOJ1076: [SCOI2008]奖励关【状压DP+期望DP】
Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的 ...
-
bzoj千题计划179:bzoj1237: [SCOI2008]配对
http://www.lydsy.com/JudgeOnline/problem.php?id=1237 如果没有相同的数不能配对的限制 那就是排好序后 Σ abs(ai-bi) 相同的数不能配对 交 ...
随机推荐
-
导出excel表功能
前台: <asp:Button ID="btndao" runat="server" Text="导出excel文件" onclic ...
-
LINUX单网卡绑定多个IP
在linux下,我们有时候需要给单网卡设置不同的IP地址,这样就涉及到单网卡绑定多个IP地址的情况.使用本方法可以方便的为单网卡绑定多个IP地址.笔者使用的环境是centos5.6,应该在fedora ...
-
javascript(3)
使用javascript改进链接 摘自<javascript基础教程> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Trans ...
-
MacTex XeLaTex xdvipdfmx:fatal: pdf_ref_obj(): passed invalid object. 报错的解决方法
在使用MacTex配合TexStudio编译beamer的时候,爆出如下错误, xdvipdfmx:fatal: pdf_ref_obj(): passed invalid object. 结果尝试其 ...
-
使用 qemu 搭建内核开发环境
本文主要介绍在 MacOS 上使用 qemu 搭建 Linux Kernel 的开发环境.(在开始之前需要注意的是,本文中的 Linux 开发环境是一个远程服务器,而 qemu 被安装在本地的 Mac ...
-
CentOS Ubantu linux中实用系统相关常用命令
系统信息相关命令 本节内容主要是为了方便通过远程终端维护服务器时,查看服务器上当前 系统日期和时间 / 磁盘空间占用情况 / 程序执行情况 本小结学习的终端命令基本都是查询命令,通过这些命令对系统资源 ...
-
值得推荐的五大敏捷PHP开发框架
各位开发者,对于在HTML中混乱使用PHP的人来说,我们给大家推荐几款PHP敏捷开发的框架,以及它们为什么能够流行. 在我们开始之前,先了解敏捷开发是个什么东东. 敏捷是一种软件开发方法,每次开发计划 ...
-
从零開始学android&;lt;使用嵌套布局实现计算器界面.十七.&;gt;
所谓的嵌套布局就是在一个文件里嵌套多个布局文件 <span style="font-size:18px;"> <LinearLayout android:layo ...
-
【BZOJ4919】[Lydsy六月月赛]大根堆 线段树合并
[BZOJ4919][Lydsy六月月赛]大根堆 Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切 ...
-
mvc学习-编辑提交需要注意-mvc重点
示例代码: // GET: /Movies/Edit/5 public ActionResult Edit(int? id) { if (id == null) { return new HttpSt ...