UVA 11174 Stand in a Line 树上计数

时间:2023-03-08 18:35:38

UVA 11174

考虑每个人(t)的所有子女,在全排列中,t可以和他的任意子女交换位置构成新的排列,所以全排列n!/所有人的子女数连乘   即是答案 当然由于有MOD 要求逆。

#include <cstdio>
#include <cstring>
#include <vector> using namespace std;
typedef long long ll;
const int N = 40005;
const ll MOD = 1e9+7; int n, m;
ll v[N];
vector<int> g[N]; void init () {
scanf("%d%d", &n, &m); memset(v, 0, sizeof(v));
for (int i = 0; i <= n; i++)
g[i].clear(); int a, b;
for (int i = 0; i < m; i++) {
scanf("%d%d", &a, &b);
g[b].push_back(a);
}
} ll dfs(int x) {
if (v[x])
return v[x]; for (int i = 0; i < g[x].size(); i++)
v[x] += dfs(g[x][i]);
return ++v[x];
} void gcd (ll a, ll b, ll& x, ll& y, ll& d) {
if (b == 0) {
d = a;
x = 1;
y = 0;
} else {
gcd(b, a%b, y, x, d);
y -= x*(a/b);
}
} int main () {
int cas;
scanf("%d", &cas);
while (cas--) {
init (); ll ans = 1, b = 1;
for (ll i = 1; i <= n; i++)
ans = (ans * i) % MOD; for (int i = 1; i <= n; i++)
b = (b * dfs(i)) % MOD; ll p, k, d = 1;
gcd(b, MOD, p, k, d);
ans = ((ans * p) % MOD + MOD) % MOD;
printf("%lld\n", ans);
}
return 0;
}