BZOJ3142 HNOI2013数列(组合数学)

时间:2023-03-08 17:59:54

  考虑差分序列。每个差分序列的贡献是n-差分序列的和,即枚举首项。将式子拆开即可得到n*mk-1-Σi*cnt(i),cnt(i)为i在所有差分序列中的出现次数之和。显然每一个数出现次数是相同的,所以cnt(i)即等于(k-1)*mk-2。于是就很好算了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
int m,k,p;ll n;
ll ksm(ll a,ll k)
{
if (k==) return ;
ll tmp=ksm(a,k>>);
if (k&) return tmp*tmp%p*a%p;
else return tmp*tmp%p;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3142.in","r",stdin);
freopen("bzoj3142.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
cin>>n>>k>>m>>p;k--;
cout<<(n%p*ksm(m,k)%p-(k?1ll*m*(m+)/%p*ksm(m,k-)%p*k%p:)+p)%p;
return ;
}