How many integers can you find
Time Limit : 12000/5000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 95 Accepted Submission(s) : 30
Font: Times New Roman | Verdana | Georgia
Font Size: ← →
Problem Description
Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10},
all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.
all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.
Input
There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.
Output
For each case, output the number.
Sample Input
12 2
2 3
Sample Output
7
Author
wangye
Source
2008 “Insigma International Cup” Zhejiang Collegiate Programming Contest - Warm Up(4)
——————————————————————————————————
题目的意思是给出一个n和m个数求小于n的有多少个是m个数任意个的倍数
求出,每个数和他们任意的倍数的个数利用容斥原理解决 在求个数时可以用DFS
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <cmath> using namespace std; #define LL long long
const int inf=0x7fffffff;
LL a[100]; struct node
{
LL num;
int cnt;
}ans[100005]; int tot,m;
LL n;
LL gcd(LL a,LL b)
{
return b==0?a:gcd(b,a%b);
} void dfs(int pos,LL lcm,int cnt)
{
if(pos>=m)
{
if(cnt==0)
return;
ans[tot].num=(n-1)/lcm;
ans[tot++].cnt=cnt;
return;
}
if(a[pos]==0)
dfs(pos+1,lcm,cnt);
else
{
dfs(pos+1,lcm*a[pos]/gcd(lcm,a[pos]),cnt+1);
dfs(pos+1,lcm,cnt);
} } int main()
{
while(~scanf("%lld%d",&n,&m))
{
for(int i=0; i<m; i++)
{
scanf("%lld",&a[i]); } tot=0;
dfs(0,1,0);
LL ass=0;
for(int i=0; i<tot; i++)
{
if(ans[i].cnt%2)
ass+=ans[i].num;
else
ass-=ans[i].num;
}
printf("%lld\n",ass);
}
return 0;
}