LRU least recently used.顾名思义,是根据数据的活跃度进行更新的缓存算法。
LRU Cache的LinkedHashMap实现:
LinkedHashMap自身已经实现了顺序存储,默认情况下是按照元素的添加顺序存储,也可以启用按照访问顺序存储,即最近读取的数据放在最前面,最早读取的数据放在最后面,然后它还有一个判断是否删除最老数据的方法,默认是返回false,即不删除数据,我们使用LinkedHashMap实现LRU缓存的方法就是对LinkedHashMap实现简单的扩展,扩展方式有两种,一种是inheritance,一种是delegation,具体使用什么方式看个人喜好
//LinkedHashMap的一个构造函数,当参数accessOrder为true时,即会按照访问顺序排序,最近访问的放在最前,最早访问的放在后面
public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) {
super(initialCapacity, loadFactor);
this.accessOrder = accessOrder;
} //LinkedHashMap自带的判断是否删除最老的元素方法,默认返回false,即不删除老数据
//我们要做的就是重写这个方法,当满足一定条件时删除老数据
protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
return false;
}
采用inheritance方式实现比较简单,而且实现了Map接口,在多线程环境使用时可以使用 Collections.synchronizedMap()方法实现线程安全操作
package cn.lzrabbit.structure.lru; import java.util.LinkedHashMap;
import java.util.Map; /**
* Created by liuzhao on 14-5-15.
*/
public class LRUCache2<K, V> extends LinkedHashMap<K, V> {
private final int MAX_CACHE_SIZE; public LRUCache2(int cacheSize) {
super((int) Math.ceil(cacheSize / 0.75) + 1, 0.75f, true);
MAX_CACHE_SIZE = cacheSize;
} @Override
protected boolean removeEldestEntry(Map.Entry eldest) {
return size() > MAX_CACHE_SIZE;
} @Override
public String toString() {
StringBuilder sb = new StringBuilder();
for (Map.Entry<K, V> entry : entrySet()) {
sb.append(String.format("%s:%s ", entry.getKey(), entry.getValue()));
}
return sb.toString();
}
}
这样算是比较标准的实现吧,实际使用中这样写还是有些繁琐,更实用的方法时像下面这样写,省去了单独见一个类的麻烦
final int cacheSize = 100;
Map<String, String> map = new LinkedHashMap<String, String>((int) Math.ceil(cacheSize / 0.75f) + 1, 0.75f, true) {
@Override
protected boolean removeEldestEntry(Map.Entry<String, String> eldest) {
return size() > cacheSize;
}
};
LRU缓存LinkedHashMap(delegation)实现
delegation方式实现更加优雅一些,但是由于没有实现Map接口,所以线程同步就需要自己搞定了
package cn.lzrabbit.structure.lru; import java.util.LinkedHashMap;
import java.util.Map;
import java.util.Set; /**
* Created by liuzhao on 14-5-13.
*/
public class LRUCache3<K, V> { private final int MAX_CACHE_SIZE;
private final float DEFAULT_LOAD_FACTOR = 0.75f;
LinkedHashMap<K, V> map; public LRUCache3(int cacheSize) {
MAX_CACHE_SIZE = cacheSize;
//根据cacheSize和加载因子计算hashmap的capactiy,+1确保当达到cacheSize上限时不会触发hashmap的扩容,
int capacity = (int) Math.ceil(MAX_CACHE_SIZE / DEFAULT_LOAD_FACTOR) + 1;
map = new LinkedHashMap(capacity, DEFAULT_LOAD_FACTOR, true) {
@Override
protected boolean removeEldestEntry(Map.Entry eldest) {
return size() > MAX_CACHE_SIZE;
}
};
} public synchronized void put(K key, V value) {
map.put(key, value);
} public synchronized V get(K key) {
return map.get(key);
} public synchronized void remove(K key) {
map.remove(key);
} public synchronized Set<Map.Entry<K, V>> getAll() {
return map.entrySet();
} public synchronized int size() {
return map.size();
} public synchronized void clear() {
map.clear();
} @Override
public String toString() {
StringBuilder sb = new StringBuilder();
for (Map.Entry entry : map.entrySet()) {
sb.append(String.format("%s:%s ", entry.getKey(), entry.getValue()));
}
return sb.toString();
}
}
注:此实现为非线程安全,若在多线程环境下使用需要在相关方法上添加synchronized以实现线程安全操作