区间DP POJ 1141 Brackets Sequence

时间:2023-03-08 16:32:42
Brackets Sequence
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 29520   Accepted: 8406   Special Judge

Description

Let us define a regular brackets sequence in the following way:

1. Empty sequence is a regular sequence. 
2. If S is a regular sequence, then (S) and [S] are both regular sequences. 
3. If A and B are regular sequences, then AB is a regular sequence.

For example, all of the following sequences of characters are regular brackets sequences:

(), [], (()), ([]), ()[], ()[()]

And all of the following character sequences are not:

(, [, ), )(, ([)], ([(]

Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2 ... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.

Input

The input file contains at most 100 brackets (characters '(', ')', '[' and ']') that are situated on a single line without any other characters among them.

Output

Write to the output file a single line that contains some regular brackets sequence that has the minimal possible length and contains the given sequence as a subsequence.

Sample Input

([(]

Sample Output

()[()]
    
 /*对于DP题目需要记录到底是怎样得到结果的,不一定了可以通过记录信息直接得到,可以选择数组记录其他有用信息,可以写递归来找出最后的答案。*/
#define N 111
#include<iostream>
using namespace std;
#include<cstring>
#include<cstdio>
#define inf (1<<31)-1
int f[N][N],pos[N][N],lens;
char s[N];
void print(int l,int r)/*输出序列的过程*/
{
if(l<=r)/*一定要有这一句,否则对于相邻的‘()’,就会死循环了*/
{
if(l==r)/*能到这一步,说明只能补上括号了*/
{
if(s[l]=='('||s[l]==')') printf("()");
if(s[l]=='['||s[l]==']') printf("[]");
}
else
{
if(pos[l][r]==-)/*说明该区间最左括号与最右匹配*/
{
printf("%c",s[l]);
print(l+,r-);/**/
printf("%c",s[r]);
}
else
{
print(l,pos[l][r]);
print(pos[l][r]+,r);
}
}
}
}
int main()
{
// freopen("bracket.in","r",stdin);
// freopen("bracket.out","w",stdout);
scanf("%s",s+);
lens=strlen(s+);
for(int i=;i<=lens;++i)
f[i][i]=;
/* for(int i=lens-1;i>=1;--i)
for(int j=i+1;j<=lens;++j)
{
f[i][j]=inf;
if(((s[i]=='('&&s[j]==')')||(s[i]=='['&&s[j]==']')))
{
f[i][j]=f[i+1][j-1];
pos[i][j]=-1;
} for(int k=i;k<=j-1;++k)
{
if(f[i][j]>f[i][k]+f[k+1][j])
{
f[i][j]=f[i][k]+f[k+1][j];
pos[i][j]=k;
} } }这两种都是可以得出正确答案的,但是我建议使用下面的,对于区间DP,最外层循环最好枚举区间长度,内层枚举区间*/
for(int k=;k<lens;++k)
for(int i=,j=i+k;j<=lens&&i<=lens;++j,++i)
{
f[i][j]=inf;
if((s[i]=='('&&s[j]==')')||(s[i]=='['&&s[j]==']'))
{
f[i][j]=f[i+][j-];
pos[i][j]=-;
}
/*不要加else,因为即使当前区间的最左和最右匹配,也不一定比放弃他们匹配优*/
for(int k=i;k<=j-;++k)
{
if(f[i][j]>f[i][k]+f[k+][j])
{
f[i][j]=f[i][k]+f[k+][j];
pos[i][j]=k;
} } }
print(,lens);
printf("\n");/*坑爹的POJ,没有这句,一直没对*/
//fclose(stdin);fclose(stdout);
return ;
}