图——最小生成树的普里姆算法

时间:2020-12-28 11:41:57
/*
*Copyright (c) 2015 , 烟台大学计算机学院
*All right resvered .
*文件名称: prim算法.cpp
*作 者: 郑兆涵
*图——最小生成树的普里姆算法
*/

问题:

最小生成树的prim算法例子

测试用图为:

图——最小生成树的普里姆算法


编程代码:

//头文件:graph.h,包含定义图数据结构的代码、宏定义、要实现算法的函数的声明
#ifndef GRAPH_H_INCLUDED
#define GRAPH_H_INCLUDED
#define MAXV 100 //最大顶点个数
#define INF 32767 //INF表示∞
typedef int InfoType;

//以下定义邻接矩阵类型
typedef struct
{
int no; //顶点编号
InfoType info; //顶点其他信息,在此存放带权图权值
} VertexType; //顶点类型
typedef struct //图的定义
{
int edges[MAXV][MAXV]; //邻接矩阵
int n,e; //顶点数,弧数
VertexType vexs[MAXV]; //存放顶点信息
} MGraph; //图的邻接矩阵类型

//以下定义邻接表类型
typedef struct ANode //弧的结点结构类型
{
int adjvex; //该弧的终点位置
struct ANode *nextarc; //指向下一条弧的指针
InfoType info; //该弧的相关信息,这里用于存放权值
} ArcNode;
typedef int Vertex;

typedef struct Vnode //邻接表头结点的类型
{
Vertex data; //顶点信息
int count; //存放顶点入度,只在拓扑排序中用
ArcNode *firstarc; //指向第一条弧
} VNode;
typedef VNode AdjList[MAXV]; //AdjList是邻接表类型

typedef struct
{
AdjList adjlist; //邻接表
int n,e; //图中顶点数n和边数e
} ALGraph; //图的邻接表类型

//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)
// n - 矩阵的阶数
// g - 要构造出来的邻接矩阵数据结构
void ArrayToMat(int *Arr, int n, MGraph &g); //用普通数组构造图的邻接矩阵
void ArrayToList(int *Arr, int n, ALGraph *&); //用普通数组构造图的邻接表
void MatToList(MGraph g,ALGraph *&G);//将邻接矩阵g转换成邻接表G
void ListToMat(ALGraph *G,MGraph &g);//将邻接表G转换成邻接矩阵g
void DispMat(MGraph g);//输出邻接矩阵g
void DispAdj(ALGraph *G);//输出邻接表G
#endif // GRAPH_H_INCLUDED

//源文件:graph.cpp,包含实现各种算法的函数的定义
#include <stdio.h>
#include <malloc.h>
#include "graph.h"

//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)
// n - 矩阵的阶数
// g - 要构造出来的邻接矩阵数据结构
void ArrayToMat(int *Arr, int n, MGraph &g)
{
int i,j,count=0; //count用于统计边数,即矩阵中非0元素个数
g.n=n;
for (i=0; i<g.n; i++)
for (j=0; j<g.n; j++)
{
g.edges[i][j]=Arr[i*n+j]; //将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j],计算存储位置的功夫在此应用
if(g.edges[i][j]!=0)
count++;
}
g.e=count;
}

void ArrayToList(int *Arr, int n, ALGraph *&G)
{
int i,j,count=0; //count用于统计边数,即矩阵中非0元素个数
ArcNode *p;
G=(ALGraph *)malloc(sizeof(ALGraph));
G->n=n;
for (i=0; i<n; i++) //给邻接表中所有头节点的指针域置初值
G->adjlist[i].firstarc=NULL;
for (i=0; i<n; i++) //检查邻接矩阵中每个元素
for (j=n-1; j>=0; j--)
if (Arr[i*n+j]!=0) //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j]
{
p=(ArcNode *)malloc(sizeof(ArcNode)); //创建一个节点*p
p->adjvex=j;
p->info=Arr[i*n+j];
p->nextarc=G->adjlist[i].firstarc; //采用头插法插入*p
G->adjlist[i].firstarc=p;
}

G->e=count;
}

void MatToList(MGraph g, ALGraph *&G)
//将邻接矩阵g转换成邻接表G
{
int i,j;
ArcNode *p;
G=(ALGraph *)malloc(sizeof(ALGraph));
for (i=0; i<g.n; i++) //给邻接表中所有头节点的指针域置初值
G->adjlist[i].firstarc=NULL;
for (i=0; i<g.n; i++) //检查邻接矩阵中每个元素
for (j=g.n-1; j>=0; j--)
if (g.edges[i][j]!=0) //存在一条边
{
p=(ArcNode *)malloc(sizeof(ArcNode)); //创建一个节点*p
p->adjvex=j;
p->info=g.edges[i][j];
p->nextarc=G->adjlist[i].firstarc; //采用头插法插入*p
G->adjlist[i].firstarc=p;
}
G->n=g.n;
G->e=g.e;
}

void ListToMat(ALGraph *G,MGraph &g)
//将邻接表G转换成邻接矩阵g
{
int i,j;
ArcNode *p;
g.n=G->n; //根据一楼同学“举报”改的。g.n未赋值,下面的初始化不起作用
g.e=G->e;
for (i=0; i<g.n; i++) //先初始化邻接矩阵
for (j=0; j<g.n; j++)
g.edges[i][j]=0;
for (i=0; i<G->n; i++) //根据邻接表,为邻接矩阵赋值
{
p=G->adjlist[i].firstarc;
while (p!=NULL)
{
g.edges[i][p->adjvex]=p->info;
p=p->nextarc;
}
}
}

void DispMat(MGraph g)
//输出邻接矩阵g
{
int i,j;
for (i=0; i<g.n; i++)
{
for (j=0; j<g.n; j++)
if (g.edges[i][j]==INF)
printf("%3s","∞");
else
printf("%3d",g.edges[i][j]);
printf("\n");
}
}

void DispAdj(ALGraph *G)
//输出邻接表G
{
int i;
ArcNode *p;
for (i=0; i<G->n; i++)
{
p=G->adjlist[i].firstarc;
printf("%3d: ",i);
while (p!=NULL)
{
printf("-->%d/%d ",p->adjvex,p->info);
p=p->nextarc;
}
printf("\n");
}
}

//编写main函数,进行相关测试
#include <stdio.h>
#include <malloc.h>
#include "graph.h"
void Prim(MGraph g,int v)
{
int lowcost[MAXV]; //顶点i是否在U中
int min;
int closest[MAXV],i,j,k;
for (i=0; i<g.n; i++) //给lowcost[]和closest[]置初值
{
lowcost[i]=g.edges[v][i];
closest[i]=v;
}
for (i=1; i<g.n; i++) //找出n-1个顶点
{
min=INF;
for (j=0; j<g.n; j++) //在(V-U)中找出离U最近的顶点k
if (lowcost[j]!=0 && lowcost[j]<min)
{
min=lowcost[j];
k=j; //k记录最近顶点的编号
}
printf(" 边(%d,%d)权为:%d\n",closest[k],k,min);
lowcost[k]=0; //标记k已经加入U
for (j=0; j<g.n; j++) //修改数组lowcost和closest
if (g.edges[k][j]!=0 && g.edges[k][j]<lowcost[j])
{
lowcost[j]=g.edges[k][j];
closest[j]=k;
}
}
}
int main()
{
MGraph g;
int A[6][6]=
{
{0,6,1,5,INF,INF},
{6,0,5,INF,3,INF},
{1,5,0,5,6,4},
{5,INF,5,0,INF,2},
{INF,3,6,INF,0,6},
{INF,INF,4,2,6,0}
};
ArrayToMat(A[0], 6, g);
printf("最小生成树构成:\n");
Prim(g,0);
return 0;
}

输出结果:

图——最小生成树的普里姆算法



我的学习心得:

以上代码取自老师的代码,而测试用图也是老师的一个环的简单图.

根据学习方案的问题,我又从新对下图进行了分析,以及将原先的A[6][6],从新改写为B[6][6]的邻接数组,并进行相关测试:

图——最小生成树的普里姆算法


int main()
{
MGraph g;
int B[6][6]=
{
{0,10,INF,INF,19,21},
{10,0,5,6,INF,11},
{INF,5,0,6,INF,INF},
{INF,6,6,0,18,14},
{19,INF,INF,18,0,33},
{21,11,INF,14,33,0}
};
ArrayToMat(B[0], 6, g);
printf("最小生成树构成:\n");
Prim(g,0);
return 0;
}

输出结果:

图——最小生成树的普里姆算法


普里姆算法知识点:

普里姆算法:
普里姆算法是一种构造性算法.假设G=(V,E)是一个具有n哥顶点的带权连通无向图,T=(U,TE)是G的最小生成树,其中U是T的顶点集,TE是T的边集,则由G构造从其实顶点v出发的最小生成树T的步骤如下:
(1)初始化U={v},以v到其他顶点的所有边为候选边;
(2)重复以下步骤(n-1)次,使得其他(n-1)哥顶点被加入到U中:
①从候选边中挑选权值最小的边加入TE,设该边在V-U中的顶点是k,将k加入U中;
②考察当前V-U中的所有顶点j,修改候选边,若边(k,j)的权值小于原来和顶点j关联的候选边,则用边(k,j)取代后者作为候选边.

以图一为例:

图——最小生成树的普里姆算法


图——最小生成树的普里姆算法


普里姆算法实现:
int lowcost[MAXV];    //记录从u到u-v的边的最小劝值
在初始的时候,选中了U={0},则0到编号为0的顶点的权值是0,到编号为1的顶点的权值为6,到1的权值为1,到3的权值为5,而到编号为4和5的权值无法直接到达,所以权值为∞,可以记录下U中的顶点到图中所有顶点的权值。


int closest[MAXV];     //记录最小权值的边对应的顶点
在初始的时候,记录下编号为1的顶点是由编号为0的顶点到达的,依次的0.1.2.3.4.5都是由0所到达的。


接下来的过程只需要将图的邻接矩阵给出,并依靠这两个数组即可完成添加工作。