使用pandas.to_csv时如何指定日期格式?

时间:2021-02-11 22:51:49

The default output format of to_csv() is:

to_csv()的默认输出格式为:

12/14/2012  12:00:00 AM

I cannot figure out how to output only the date part with specific format:

我无法弄清楚如何只输出具有特定格式的日期部分:

20121214

or date and time in two separate columns in the csv file:

或csv文件中两个单独列中的日期和时间:

20121214,  084530

The documentation is too brief to give me any clue as to how to do these. Can anyone help?

文档太简短了,不能给我任何关于如何做这些的线索。有人可以帮忙吗?

2 个解决方案

#1


31  

You could use strftime to save these as separate columns:

您可以使用strftime将这些保存为单独的列:

df['date'] = df['datetime'].apply(lambda x: x.strftime('%d%m%Y'))
df['time'] = df['datetime'].apply(lambda x: x.strftime('%H%M%S'))

and then be specific about which columns to export to csv:

然后具体说明要导出到csv的列:

df[['date', 'time', ... ]].to_csv('df.csv')

#2


65  

With the new version of Pandas you can use the date_format parameter of the to_csv method:

使用新版本的Pandas,您可以使用to_csv方法的date_format参数:

df.to_csv(filename, date_format='%Y%m%d')

#1


31  

You could use strftime to save these as separate columns:

您可以使用strftime将这些保存为单独的列:

df['date'] = df['datetime'].apply(lambda x: x.strftime('%d%m%Y'))
df['time'] = df['datetime'].apply(lambda x: x.strftime('%H%M%S'))

and then be specific about which columns to export to csv:

然后具体说明要导出到csv的列:

df[['date', 'time', ... ]].to_csv('df.csv')

#2


65  

With the new version of Pandas you can use the date_format parameter of the to_csv method:

使用新版本的Pandas,您可以使用to_csv方法的date_format参数:

df.to_csv(filename, date_format='%Y%m%d')