图的连通性问题&tarjan求强连通分量、割点、桥

时间:2021-02-12 22:08:27

基本概念:

1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点

2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合

3.点连通度:最小割点集合中的顶点数。

4.割边(桥):删掉它之后,图必然会分裂为两个或两个以上的子图。

5.割边集合:如果有一个边集合,删除这个边集合以后,原图变成多个连通块,就称这个点集为割边集合

6.边连通度:一个图的边连通度的定义为,最小割边集合中的边数。

7.缩点:把没有割边的连通子图缩为一个点,此时满足任意两点之间都有两条路径可达。

注:求块<>求缩点。缩点后变成一棵k个点k-1条割边连接成的树。而割点可以存在于多个块中。

8.双连通分量:分为点双连通和边双连通。它的标准定义为:点连通度大于1的图称为点双连通图,边连通度大于1的图称为边双连通图。通俗地讲,满足任意两点之间,能通过两条或两条以上没有任何重复边的路到达的图称为双连通图。无向图G的极大双连通子图称为双连通分量

Tarjan算法的应用论述:

1.求强连通分量、割点、桥、缩点:

对于Tarjan算法中,我们得到了dfn和low两个数组,

low[u]:=min(low[u],dfn[v])——(u,v)为后向边,v不是u的子树;

low[u]:=min(low[u],low[v])——(u,v)为树枝边,v为u的子树;

下边对其进行讨论:

若low[v]>=dfn[u],则u为割点,u和它的子孙形成一个块。因为这说明u的子孙不能够通过其他边到达u的祖先,这样去掉u之后,图必然分裂为两个子图。

若low[v]>dfn[u],则(u,v)为割边。理由类似于上一种情况。




求强连通分量

当DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个强连通分量。

tarjan(u)
{
DFN[u]=Low[u]=++Index // 为节点u设定次序编号和Low初值
Stack.push(u) // 将节点u压入栈中
for each (u, v) in E // 枚举每一条边
if (v is not visted) // 如果节点v未被访问过
tarjan(v) // 继续向下找
Low[u] = min(Low[u], Low[v])
else if (v in S) // 如果节点v还在栈内
Low[u] = min(Low[u], DFN[v])
if (DFN[u] == Low[u]) // 如果节点u是强连通分量的根
repeat
v = S.pop // 将v退栈,为该强连通分量中一个顶点
print v
until (u== v)
}


若low[v]>=dfn[u],则u为割点,节点v的子孙和节点u形成一个块。因为这说明v的子孙不能够通过其他边到达u的祖先,这样去掉u之后,图必然分裂为两个子图。这样我们处理点u时,首先递归u的子节点v,然后从v回溯至u后,如果发现上述不等式成立,则找到了一个割点u,并且u和v的子树构成一个块。

void tarjan(int x)
{
v[x]=1,dfn[x]=low[x]=++num;
for(int i=head[x];i;i=next[i])
if(!v[ver[i]])
{
tarjan(ver[i]);
low[x]=min(low[x],low[ver[i]]);
if(dfn[x]<=low[ver[i]]) v[x]++;
}
else low[x]=min(low[x],dfn[ver[i]]);
if((x==1&&v[x]>2)||(x>1&&v[x]>1)) v[x]=2; else v[x]=1;//v[x]=2表示该点为割点,注意其中第一个点要特判
}



若low[v]>dfn[u],则u为割边. 但是实际处理时我们并不这样判断,因为有的图上可能有重边,这样不好处理。我们记录每条边的标号(一条无向边拆成的两条有向边标号相同),记录每个点的父 亲到它的边的标号,如果边(u,v)是v的父亲边,就不能用dfn[u]更新low[v]。这样如果遍历完v的所有子节点后,发现 low[v]=dfn[v],说明u的父亲边(u,v)为割边。

void tarjan(int x)
{
vis[x]=1;
dfn[x]=low[x]=++num;
for(int i=head[x];i;i=next[i])
if(!vis[ver[i]])
{
p[ver[i]]=edge[i];//记录父亲边
tarjan(ver[i]);
low[x]=min(low[x],low[ver[i]]);
}
else if(p[x]!=edge[i])//不是父亲边才更新
low[x]=min(low[x],dfn[ver[i]]);
if(p[x]&&low[x]==dfn[x]) f[p[x]]=1;//是割边
}


3.求最近公共祖先(LCA)

在 遍历到u时,先tarjan遍历完u的子树,则u和u的子树中的节点的最近公共祖先就是u,并且u和【u的兄弟节点及其子树】的最近公共祖先就是u的父 亲。注意到由于我们是按照DFS顺序遍历的,我们可用一个color数组标记,正在访问的染色为1,未访问的标记为0,已经访问到即在【u的子树中的】及 【u的已访问的兄弟节点及其子树中的】染色标记为2,这样我们可以通过并查集的不断合并更新,通过find实现以上目标。

注:用链表存储边和问题,可以使得该算法的时间复杂度降低为O(n+m+q),其中n、m、q分别为点、边、问题数目。本文中为了书写简便,采用的是矩阵的存储方式。

function find(x:longint):longint;  begin    if f[x]<>xthen f[x]:=find(f[x]);    find:=f[x];  end;procedure tarjan(u:longint);  begin     f[u]:=u; color[u]:=1;     for i:=1 to ndo     if (g[u,i])and(color[i]=0)then//g[u,i]表示u连着i        begin          tarjan(i); f[i]:=u;        end;     for i:=1 to ndo     if ((ask[u,i])or(ask[i,u]))and(color[i]=2)then//ask[u,i]表示询问了u,i       begin         lca[u,i]:=find(i); lca[i,u]:=lca[u,i];       end;     color[u]:=2;  end;