Java 通过先序中序序列生成二叉树

时间:2024-01-06 15:59:08

题目

  二叉树的前序以及后续序列,以空格间隔每个元素,重构二叉树,最后输出二叉树的三种遍历方式的序列以验证。

  输入:

  1 2 3 4 5 6 7 8 9 10

  3 2 5 4 1 7 8 6 10 9

  输出:

  1,2,3,4,5,6,7,8,9,10
  3,2,5,4,1,7,8,6,10,9
  3,5,4,2,8,7,10,9,6,1

分析

  以上述输入为例,该树的结构为:

    Java 通过先序中序序列生成二叉树

  在解决这方面问题时,需要把控这几个因素:
  (1)前序的第一个元素必为根节点;

  (2)中序中在根节点左边的为左子树,在根节点右边的为右子树。

  抓住上面两点,就可以无限递归,从而产生一个完整的二叉树。

算法演算

   前序:1 2 3 4 5 6 7 8 9 10

   中序:3 2 5 4 1 7 8 6 10 9

    

    <默认优先处理左子树>

   (1)第一次:

      产生节点 1。

      生成左子树

          先序:2 3 4 5

          中序:3 2 5 4

      生成右子树

          前序:6 7 8 9 10

          中序:7 8 6 10 9

    (2)第二次

       产生节点 2(由左子树得来,故为第一次结点的左子树)。

       生成左子树

          前序:3

          中序:3

       生成右子树

          先序:4 5

          中序:5 4

    (3)第三次

        产生节点 3(同上,产生左子树)

        <此处限定:当先序长度小于等于1时,直接Return>

    (4)第四次(因为Return,所以处理第二次产生的右子树)

       产生结点 4

       生成左子树

             先序:null

           中序:null

       生成右子树

          先序:5

          后续:5

      <此处限定:当新生成的左(右)序列为空时,则只进行右(左)序列的处理,并将为空的节点初始化为null>

  

    ……

    以此类推,即可轻松生成一棵二叉树。

实现代码

package DataStructe;

import java.util.ArrayList;
import java.util.Scanner; public class TreeReBuild {
/*先序(DLR)、中序(LDR)遍历对应的三个数组*/
static ArrayList<Integer> DLR=new ArrayList<Integer>();
static ArrayList<Integer> LDR=new ArrayList<Integer>();
static node root=new node(); /*二叉树的结点结构*/
static class node{
node rchild;
node lchild;
int data;
node(int ndata)
{
data=ndata;
rchild=null;
lchild=null;
}
public node() {
rchild=null;
lchild=null;
}
} /*核心算法*/
static void reBuildTreeprocess(node x,ArrayList<Integer> qx,ArrayList<Integer> zx)
{
x.data=qx.get(0);//前序第一个元素必为根节点
if(qx.size()<=1)
{
return;
}
x.lchild=new node();
x.rchild=new node();
//两个序列的拆分索引
int rootindex = 0;
int qxindex=0;
/*拆分序列*/
ArrayList<Integer>newqxleft = new ArrayList<Integer>();
ArrayList<Integer>newqxright= new ArrayList<Integer>();
ArrayList<Integer>newzxleft = new ArrayList<Integer>();
ArrayList<Integer>newzxright = new ArrayList<Integer>();
//拆分中序
for(int j=0;j<zx.size();j++)
{
if(zx.get(j)==x.data)
{
zx.remove(j);
j--;
rootindex=j;
break;
}
} //生成新的中序(左)
for(int j=0;j<=rootindex;j++){ newzxleft.add(zx.get(j));
}
//生成新的中序(右)
for(int j=rootindex+1;j<zx.size();j++)
{
newzxright.add(zx.get(j));
} //拆分前序,确定分离的元素索引
if(newzxright.isEmpty())
{
//中序右为空,前序全为左子树
for(int i=1;i<qx.size();i++)
{
newqxleft.add(qx.get(i));
}
x.rchild=null;
reBuildTreeprocess(x.lchild, newqxleft, newzxleft);
}
else{
if(newzxleft.isEmpty())
{
//中序左为空,前序全为右子树
for(int i=1;i<qx.size();i++)
{
newqxright.add(qx.get(i));
}
x.lchild=null;
reBuildTreeprocess(x.rchild, newqxright, newzxright);
}
else {
//均不为空,分别生成
outer: for(int r=0;r<qx.size();r++)
{ for(int i=0;i<newzxright.size();i++)
{ if(qx.get(r)==newzxright.get(i))
{ qxindex=r;
break outer;
}
}
} for(int t=1;t<qxindex;t++)
{
newqxleft.add(qx.get(t));
}
for(int y=qxindex;y<qx.size();y++)
{
newqxright.add(qx.get(y));
}
reBuildTreeprocess(x.lchild, newqxleft, newzxleft);
reBuildTreeprocess(x.rchild, newqxright, newzxright);
}
}
}
/*先序遍历,用于测试结果*/
static void XSearch(node x)
{
if (x==null) {
return;
}
System.out.print(x.data+",");
if (x.lchild!=null) {
XSearch(x.lchild);
} if(x.rchild!=null){
XSearch(x.rchild);
}
} /*中续遍历,用于测试结果*/
static void ZSearch(node x)
{
if (x==null) {
return;
}
if (x.lchild!=null) {
ZSearch(x.lchild);
}
System.out.print(x.data+",");
if(x.rchild!=null){
ZSearch(x.rchild);
} } /*后续遍历,用于测试结果*/
static void HSearch(node x)
{
if (x==null) {
return;
}
if (x.lchild!=null) {
HSearch(x.lchild);
}
if(x.rchild!=null){
HSearch(x.rchild);
}
System.out.print(x.data+",");
} public static void main(String[] args) {
Scanner getin=new Scanner(System.in); /*读入先序序列*/
String readydata=getin.nextLine();
String []DLRdata=readydata.split(" ");
for(int i=0;i<DLRdata.length;i++)
{
int qxdata=Integer.parseInt(DLRdata[i]);
DLR.add(qxdata);
} /*读入中序序列*/
readydata=getin.nextLine();
String[]LDRdata=readydata.split(" ");
for(int i=0;i<LDRdata.length;i++)
{
int zxdata=Integer.parseInt(LDRdata[i]);
LDR.add(zxdata);
}
reBuildTreeprocess(root, DLR, LDR); XSearch(root);
System.out.println();
ZSearch(root);
System.out.println();
HSearch(root);
System.out.println(); } }