Codeforces446C DZY Loves Fibonacci Numbers(线段树 or 分块?)

时间:2024-01-05 13:49:56

第一次看到段更斐波那契数列的,整个人都不会好了。事后看了题解才明白了一些。

首先利用二次剩余的知识,以及一些数列递推式子有下面的

Codeforces446C DZY Loves Fibonacci Numbers(线段树 or 分块?)

Codeforces446C DZY Loves Fibonacci Numbers(线段树 or 分块?)

Codeforces446C DZY Loves Fibonacci Numbers(线段树 or 分块?)

Codeforces446C DZY Loves Fibonacci Numbers(线段树 or 分块?)

Codeforces446C DZY Loves Fibonacci Numbers(线段树 or 分块?)

Codeforces446C DZY Loves Fibonacci Numbers(线段树 or 分块?)

至于怎么解出x^2==5(mod 10^9+9),我就不知道了,但是要用的时候可以枚举一下,把这些参数求出来之后就题目就可以转化为维护等比数列。

由于前面的常数可以最后乘,所以就等于维护两个等比数列好了。

下面我们来看如何维护一个等比数列。假如我对区间[L,R]的加上1,2,4,8...2^n的话,那么我只需要加一个标记x表示这个区间被加了多少次这样的2^n.

举个例子  [1,8] 上加一个等比数列,我只需要x+=1,就可以了,当我的区间往下传的时候,[1,4]这个区间的x+=1,[5,8]这个区间x+=2^4*1

这个利用的就是公比相同的数列相加仍然是等比数列的性质。求和利用的则是 a1(q^n-1)/(q-1),所以只需要预处理出q-1的逆元还有q^n我们就可以根据区间信息很快的求出和了。

在本题中 q-1的逆=q,首项也是q,所以前n项和就是 qi^(n+2)-qi^2(i=1,2). 其实主要就是考虑怎么维护等比数列的问题。

然后我看到在别人的AC的方法里还有这么一种神方法,他预先设定了一个阈值K,当当前的更新操作数j<K的时候,它就用一个类似于树状数组段更的方法,用一个 d数组去存内容,譬如它要在区间 [3,6]上加一段fibonacci

原来:

id 0 1 2 3 4 5 6 7 8 9 10

d  0 0 0 0 0 0 0 0 0 0 0

更新:

id 0 1 2 3 4 5 6  7  8  9 10

d  0 0 0 1 0 0 0 -5  -3 0 0

我们可以发现,当利用 d[i]=d[i]+d[i-1]+d[i-2] i由小到大更新后就会得到

id 0 1 2 3 4 5 6  7  8  9 10

d  0 0 0 1 1 2 3  0  0  0  0

所以对于[L,R]上加一段操作,我们可以d[L]+=1; d[R+1]-=f[R-L+2],d[R+2]=f[R-L+1];

所以假如我更新了m次,我每次更新的复杂度是O(1),我把所有数求出来一次的复杂度是O(n)

然后他的算法是这样的,j<K的时候更新的时候按照上述方法更新,询问的话则是将询问区间和更新的区间求交,把交的和加上去。

当j==K的时候,利用d还原出新的a,把当前的区间清0.

不难发现,复杂度应该为O(mn/K+mK),当mn/K=mK的时候取最小值,所以复杂度是O(mn^(1/2)).

然后由于CF可以承受10 ^8的运算,所以打个擦边球AC了。下面贴两份代码:

#pragma warning(disable:4996)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <vector>
#include <cmath>
#include <algorithm>
using namespace std; #define ll long long
#define mod 1000000009
#define maxn 300500
ll bas = 276601605;
ll q1 = 691504013;
ll q2 = 308495997; ll xx5 = 383008016;
ll inv5 = 200000002;
ll inv2 = 500000005; ll invq1;
ll invq2; ll pow_mod(ll a, ll n){
ll ret = 1;
while (n){
if (n & 1) ret = ret*a%mod;
n >>= 1;
a = a*a%mod;
}
return ret;
} ll a[maxn], b[maxn];
int n, m; ll val[maxn];
ll sum[maxn]; struct Node
{
int l, r;
ll ax, bx;
ll sum;
}N[maxn << 2]; void build(int i, int L, int R){
N[i].l = L; N[i].r = R;
N[i].ax = N[i].bx = N[i].sum = 0;
if (L == R){
return;
}
int M = (L + R) >> 1;
build(i << 1, L, M);
build(i << 1 | 1, M + 1, R);
} void pushDown(int i){
ll av = N[i].ax, bv = N[i].bx;
if (N[i].ax != 0 || N[i].bx != 0){
N[i << 1].ax = (N[i << 1].ax + av) % mod;
N[i << 1].bx = (N[i << 1].bx + bv) % mod;
int len = N[i << 1].r - N[i << 1].l + 1;
N[i << 1 | 1].ax = (N[i << 1 | 1].ax + av*a[len] % mod) % mod;
N[i << 1 | 1].bx = (N[i << 1 | 1].bx + bv*b[len] % mod) % mod;
int len2 = N[i << 1 | 1].r - N[i << 1 | 1].l + 1;
N[i << 1].sum = (N[i << 1].sum + av*(((a[len + 2] - a[2]) % mod + mod) % mod) % mod) % mod;
N[i << 1].sum = (N[i << 1].sum - bv*(((b[len + 2] - b[2]) % mod + mod) % mod) % mod) % mod;
N[i << 1 | 1].sum = (N[i << 1 | 1].sum + av*a[len] % mod*(a[len2 + 2] - a[2] + mod) % mod) % mod;
N[i << 1 | 1].sum = ((N[i << 1 | 1].sum - bv*b[len] % mod*(b[len2 + 2] - b[2] + mod) % mod) % mod + mod) % mod;
N[i].ax = N[i].bx = 0;
}
} void pushUp(int i){
N[i].sum = (N[i << 1].sum + N[i << 1 | 1].sum) % mod;
} void update(int i, int L, int R, ll x, ll y){
if (N[i].l == L&&N[i].r == R){
N[i].ax = (N[i].ax + x) % mod;
N[i].bx = (N[i].bx + y) % mod;
int len = R - L + 1;
N[i].sum = (N[i].sum + x*(a[len + 2] - a[2] + mod) % mod + mod) % mod;
N[i].sum = (N[i].sum - y*(b[len + 2] - b[2] + mod) % mod + mod) % mod;
return;
}
pushDown(i);
int M = (N[i].l + N[i].r) >> 1;
if (R <= M){
update(i << 1, L, R, x, y);
}
else if (L > M){
update(i << 1 | 1, L, R, x, y);
}
else{
int len = (M - L + 1);
update(i << 1, L, M, x, y);
update(i << 1 | 1, M + 1, R, a[len] * x%mod, b[len] * y%mod);
}
pushUp(i);
} ll query(int i, int L, int R){
if (N[i].l == L&&N[i].r == R){
return N[i].sum;
}
pushDown(i);
int M = (N[i].l + N[i].r) >> 1;
if (R <= M){
return query(i << 1, L, R);
}
else if (L > M){
return query(i << 1 | 1, L, R);
}
else{
return (query(i << 1, L, M) + query(i << 1 | 1, M + 1, R)) % mod;
}
pushUp(i);
} int main()
{
scanf("%d%d", &n, &m);
a[0] = b[0] = 1;
for (int i = 1; i <= n + 5; i++){
a[i] = a[i - 1] * q1%mod;
b[i] = b[i - 1] * q2%mod;
}
val[0] = 0; sum[0] = 0;
for (int i = 1; i <= n; i++){
scanf("%I64d", val + i);
sum[i] = (sum[i - 1] + val[i]) % mod;
}
build(1, 1, n);
int oper, l, r;
for (int i = 0; i < m; i++){
scanf("%d%d%d", &oper, &l, &r);
if (oper == 1) update(1, l, r, 1, 1);
else {
ll res = query(1, l, r);
res = (res + mod) % mod;
res = res*bas%mod;
res = (res + ((sum[r] - sum[l - 1]) % mod+mod)%mod) % mod;
printf("%I64d\n", res);
}
}
return 0;
}
#pragma warning(disable:4996)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <vector>
#include <cmath>
#include <map>
#include <algorithm>
#include <queue>
using namespace std; #define ll long long
#define maxn 310000
#define K 800
#define mod 1000000009 ll a[maxn];
ll s[maxn];
ll f[maxn], g[maxn];
int n, m;
int kk;
ll d[maxn]; int l[K + 50], r[K + 50]; int main()
{
while (cin >> n >> m)
{
f[0] = 0; f[1] = 1; g[0] = 0; g[1] = 1;
for (int i = 2; i <= n+10; i++){
f[i] = (f[i - 1] + f[i - 2]) % mod;
g[i] = (g[i - 1] + f[i]) % mod;
}
s[0] = 0;
for (int i = 1; i <= n; i++){
scanf("%I64d", &a[i]);
s[i] = (s[i - 1] + a[i]) % mod;
}
memset(d, 0, sizeof(d));
int oper, li, ri;
kk = 0;
for (int i = 0; i < m; i++){
scanf("%d%d%d", &oper,&li,&ri);
if (oper == 1){
l[kk] = li, r[kk] = ri;
d[li] = (d[li] + 1) % mod;
d[ri + 1] = ((d[ri + 1] - f[ri - li + 2]) % mod + mod) % mod;
d[ri + 2] = ((d[ri + 2] - f[ri - li + 1]) % mod + mod) % mod;
kk++;
if (kk == K){
for (int i = 1; i <= n; i++){
if (i == 1) a[i] = (a[i] + d[i]) % mod;
else {
d[i] = (d[i] + d[i - 1] + d[i - 2]) % mod;
a[i] = (a[i] + d[i]) % mod;
}
s[i] = (s[i - 1] + a[i]) % mod;
}
memset(d, 0, sizeof(d));
kk = 0;
}
}
else{
ll res = ((s[ri] - s[li - 1]) % mod + mod) % mod;
for (int j = 0; j < kk; j++){
int lb = max(l[j], li);
int rb = min(r[j], ri);
if (lb <= rb){
res = (res + (g[rb - l[j] + 1] - g[lb - l[j]]) % mod + mod) % mod;
}
}
printf("%I64d\n", res);
}
}
}
return 0;
}