Leetcode N-Queens

时间:2023-12-03 08:56:08

The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.

Leetcode N-Queens

Given an integer n, return all distinct solutions to the n-queens puzzle.

Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.

For example,
There exist two distinct solutions to the 4-queens puzzle:

[
[".Q..", // Solution 1
"...Q",
"Q...",
"..Q."], ["..Q.", // Solution 2
"Q...",
"...Q",
".Q.."]
] 典型的N皇后问题,对每行元素进行搜索即可
class Solution {
public:
int n;
vector<vector<string> > res;
vector<int> queenIndex;
bool judgePlaceQueen(int x,int y){
for(int i = ; i < x; ++ i){
if(abs(i-x) == abs(queenIndex[i]-queenIndex[x]) || queenIndex[i] == y) return false;
}
return true;
} void dfs(int index){
if(index == n){
vector<string> board(n,string(n,'.'));
for(int i = ; i < n ; ++ i){
board[i][queenIndex[i]] = 'Q';
}
res.push_back(board);
return;
}
for(int i = ; i < n; ++ i){
queenIndex[index] = i;
if(judgePlaceQueen(index,i)) dfs(index+);
}
} vector<vector<string> > solveNQueens(int n) {
this->n = n;
for(int i = ;i < n; ++ i) queenIndex.push_back();
dfs();
return res;
}
};

下面用排列组合的方法解决。

N个皇后放置在NxN的棋盘上,必定每行一个皇后,将每行中的皇后的位置用0~N-1的数字来表示,总共N行,

这样就是0~N-1数字的排列。这样的排列只满足了任意两个皇后不能处在同一行或者一列上,并不能保证它们在一斜线上。

在加入数字排列前,判断该数字是否和排列里所有的数字在斜线上:

  如果两个数字在斜线上,那么两数之差的绝对值等于其下标差得绝对值。

class Solution {
public:
vector<vector<string> > solveNQueens(int n) {
vector<vector<string> > res;
vector<int> queen(n,);
for(int i = ; i < n ; ++ i) queen[i] = i;
do{
bool flag = false;
for(int i = ; i< n && !flag; ++ i){
for(int j = ; j < i && !flag; ++ j){
if(abs(j-i) == abs(queen[j]-queen[i]) || queen[j] == queen[i]) flag = true;
}
}
if(!flag){
vector<string> board(n,string(n,'.'));
for(int i = ; i < n; ++ i) board[i][queen[i]]='Q';
res.push_back(board);
}
}while(next_permutation(queen.begin(),queen.end()));
return res;
}
};