【BZOJ2111】[ZJOI2010]Perm 排列计数
Description
称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值
Input
输入文件的第一行包含两个整数 n和p,含义如上所述。
Output
输出文件中仅包含一个整数,表示计算1,2,⋯,的排列中, Magic排列的个数模 p的值。
Sample Input
20 23
Sample Output
16
HINT
100%的数据中,1 ≤ N ≤ 106, P ≤ 10^9,p是一个质数。
题解:题意可转化为:求n个节点能构成的完全二叉堆的个数。显然我们可以求出左右两棵子树的大小,然后分别递归下去即可。
细节有点多~
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
const int maxn=1000010;
int m=1000000;
ll n,p;
ll jc[maxn],jcc[maxn],ine[maxn],f[maxn];
int Log[maxn];
ll C(ll a,ll b)
{
if(a<b) return 0;
if(!b) return 1;
if(a<p&&b<p) return jc[a]*jcc[b]%p*jcc[a-b]%p;
return C(a%p,b%p)*C(a/p,b/p)%p;
}
ll calc(ll x)
{
if(f[x]) return f[x];
ll a=x-(1<<Log[x+1])+1;
if(a<(1<<Log[x+1]-1)) a=(1<<Log[x+1]-1)-1+a;
else a=(1<<Log[x+1])-1;
return f[x]=C(x-1,a)*calc(a)%p*calc(x-a-1)%p;
}
int main()
{
scanf("%lld%lld",&n,&p);
if(m>=p) m=p-1;
ll i;
jc[0]=jcc[0]=1,ine[0]=ine[1]=1;
for(i=2;i<=m;i++) ine[i]=(p-(p/i)*ine[p%i]%p)%p;
for(i=1;i<=m;i++) jc[i]=jc[i-1]*i%p,jcc[i]=jcc[i-1]*ine[i]%p;
for(i=2;i<=n+1;i++) Log[i]=Log[i>>1]+1;
f[0]=f[1]=1;
printf("%lld",calc(n));
return 0;
}