HDU1281 棋盘游戏 —— 二分图最大匹配 + 枚举

时间:2023-12-01 15:00:38

题目链接:https://vjudge.net/problem/HDU-1281

棋盘游戏

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5465    Accepted Submission(s): 3224

Problem Description
小希和Gardon在玩一个游戏:对一个N*M的棋盘,在格子里放尽量多的一些国际象棋里面的“车”,并且使得他们不能互相攻击,这当然很简单,但是Gardon限制了只有某些格子才可以放,小希还是很轻松的解决了这个问题(见下图)注意不能放车的地方不影响车的互相攻击。 
所以现在Gardon想让小希来解决一个更难的问题,在保证尽量多的“车”的前提下,棋盘里有些格子是可以避开的,也就是说,不在这些格子上放车,也可以保证尽量多的“车”被放下。但是某些格子若不放子,就无法保证放尽量多的“车”,这样的格子被称做重要点。Gardon想让小希算出有多少个这样的重要点,你能解决这个问题么?
HDU1281 棋盘游戏 —— 二分图最大匹配 + 枚举
Input
输入包含多组数据, 
第一行有三个数N、M、K(1<N,M<=100 1<K<=N*M),表示了棋盘的高、宽,以及可以放“车”的格子数目。接下来的K行描述了所有格子的信息:每行两个数X和Y,表示了这个格子在棋盘中的位置。
Output
对输入的每组数据,按照如下格式输出: 
Board T have C important blanks for L chessmen.
Sample Input
3 3 4
1 2
1 3
2 1
2 2
3 3 4
1 2
1 3
2 1
3 2
Sample Output
Board 1 have 0 important blanks for 2 chessmen.
Board 2 have 3 important blanks for 3 chessmen.
Author
Gardon
Source
Recommend
lcy

题解:

注意题目要求:不能放置棋子的格子,并不会影响攻击(即不是我们平时所遇到的墙),所以就不需要再对每一行和每一列都进分割了(参考HDU1045)。

1.把每一行看成一个点,编号为其行数;把每一列也看成一个点,编号为其列数。如果在[x][y]处可以放置棋子,则在连一条边 x-->y。

2.求出最大匹配数cnt。

3.枚举删除每一个可放置点,然后再求出最大匹配数,如果此时的最大匹配数小于cnt,则表明此处为关键位置。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <sstream>
#include <algorithm>
using namespace std;
const int INF = 2e9;
const int MOD = 1e9+;
const int MAXN = +; int n, uN, vN;
int M[MAXN][MAXN], link[MAXN];
bool vis[MAXN]; bool dfs(int u)
{
for(int i = ; i<=vN; i++)
if(M[u][i] && !vis[i])
{
vis[i] = true;
if(link[i]==- || dfs(link[i]))
{
link[i] = u;
return true;
}
}
return false;
} int hungary()
{
int ret = ;
memset(link, -, sizeof(link));
for(int i = ; i<=uN; i++)
{
memset(vis, , sizeof(vis));
if(dfs(i)) ret++;
}
return ret;
} int main()
{
int k, kase = ;
while(scanf("%d%d%d", &uN, &vN, &k)!=EOF)
{
memset(M, false, sizeof(M));
for(int i = ; i<=k; i++)
{
int x, y;
scanf("%d%d", &x, &y);
M[x][y] = true;
} int cnt = hungary(); int ans = ;
for(int i = ; i<=uN; i++)
for(int j = ; j<=vN; j++)
{
if(!M[i][j]) continue;
M[i][j] = false;
if(hungary()<cnt) ans++;
M[i][j] = true;
} printf("Board %d have %d important blanks for %d chessmen.\n", ++kase, ans, cnt);
}
}