可以选择使用Spark SQL直接使用INSERT语句写入Kudu表;与'append'类似,INSERT语句实际上将默认使用UPSERT语义处理;
import org.apache.kudu.spark.kudu._
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession /**
* Created by angel;
*/
object SparkSQL_insert {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setAppName("AcctfileProcess")
//设置Master_IP并设置spark参数
.setMaster("local")
.set("spark.worker.timeout", "500")
.set("spark.cores.max", "10")
.set("spark.rpc.askTimeout", "600s")
.set("spark.network.timeout", "600s")
.set("spark.task.maxFailures", "1")
.set("spark.speculationfalse", "false")
.set("spark.driver.allowMultipleContexts", "true")
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
val sparkContext = SparkContext.getOrCreate(sparkConf)
val sqlContext = SparkSession.builder().config(sparkConf).getOrCreate().sqlContext
//TODO 1:定义表名
val kuduTableName = "spark_kudu_tbl"
val kuduMasters = "hadoop01:7051,hadoop02:7051,hadoop03:7051"
//使用spark创建kudu表
val kuduContext = new KuduContext(kuduMasters, sqlContext.sparkContext)
//TODO 2:准备数据
val srcTableData = Array(
Customer("enzo", 43, "oakland"),
Customer("laura", 27, "vancouver"))
import sqlContext.implicits._
//TODO 3:配置kudu参数
val kuduOptions: Map[String, String] = Map(
"kudu.table" -> kuduTableName,
"kudu.master" -> kuduMasters)
//TODO 4:创建dataframe
val srcTableDF = sparkContext.parallelize(srcTableData).toDF() //TODO 5:创建临时表1
srcTableDF.registerTempTable("source_table") //TODO 6:创建临时表2
sqlContext.read.options(kuduOptions).kudu.registerTempTable(kuduTableName) //TODO 7:使用sparkSQL的insert操作插入数据
sqlContext.sql(s"INSERT INTO TABLE $kuduTableName SELECT * FROM source_table") //TODO 8:查询数据
sqlContext.read.options(kuduOptions).kudu.show()
}
}