科学计算三维可视化---Mlab基础(鼠标选取交互操作)

时间:2023-11-27 11:01:08

一:鼠标选取介绍

科学计算三维可视化---Mlab基础(鼠标选取交互操作)

科学计算三维可视化---Mlab基础(鼠标选取交互操作)

科学计算三维可视化---Mlab基础(鼠标选取交互操作)

二:选取红色小球分析

科学计算三维可视化---Mlab基础(鼠标选取交互操作)

科学计算三维可视化---Mlab基础(鼠标选取交互操作)

相关方法:科学计算三维可视化---Mlab基础(基于Numpy数组的绘图函数)

1.小球场景初始化建立

import numpy as np
from mayavi import mlab # 用mlab.points3d建立红色和白色小球的集合
x1, y1, z1 = np.random.random((,)) #3行10列分给三个元素,每个都是以为数组含10元素
red_glyphs = mlab.points3d(x1,y1,z1,color=(,,),resolution=) #创建10个红球,位置为x1,y1,z1,分辨率为10的小球 x2, y2, z2 = np.random.random((,)) #3行10列分给三个元素,每个都是以为数组含10元素
white_glyphs = mlab.points3d(x2,y2,z2,color=(0.9,0.9,0.9),resolution=) #创建10个白球

科学计算三维可视化---Mlab基础(鼠标选取交互操作)

2.选取框初始化建立outline方法是mlab绘制选取框

outline = mlab.outline(line_width=)  #outline即在某个物体的外围设置一个外框
outline.outline_mode = "cornered"
outline.bounds = (x1[]-0.1,x1[]+0.1,  #对x1,y1,z1为0处选取红色小球第一个
y1[]-0.1,y1[]+0.1,
z1[]-0.1,z1[]+0.1,
)

科学计算三维可视化---Mlab基础(鼠标选取交互操作)

3.选取回调函数的结构

科学计算三维可视化---Mlab基础(鼠标选取交互操作)

>>> red_glyphs.actor
<mayavi.components.actor.Actor object at 0x000000001370EEB8>
>>> red_glyphs.actor.actors
[<tvtk.tvtk_classes.actor.Actor object at 0x000000001459D0F8>]  #我们需要的是vtk actor集合

计算哪个小球被选取,

科学计算三维可视化---Mlab基础(鼠标选取交互操作)

一个小球有好多个顶点构成,设置了小球的分辨率为10,在Mayavi中resolution为10的小球中相当于有82个顶点组成的一个小球,一共10个红色小球,所以场景*有820个对应顶点,我们需要找到鼠标求解的顶点是在这820个中的哪一个,例如第100则是第二个小球
#获取一个红色小球的所有顶点,我们只是想要知道每个小球的顶点数目而已,所以不用考虑其他
glyph_points = red_glyphs.glyph.glyph_source.glyph_source.output.points.to_array() #.选取回调函数的结构
def piker_callback(picker): #当鼠标点击会返回一个vtk picker对象,我们将对该对象进行处理判断
if picker.actor in red_glyphs.actor.actors:
# 确定该小球的ID,
point_id = int(picker.point_id/glyph_points.shape[]) #picker.point_id是picker对象选取的顶点ID,glyph_points.shape[0]记录了82这个值,通过这个计算出小球的ID
if point_id != -: #表示有红色小球被选取了
#计算与此红色小球相关的坐标
x,y,z = x1[point_id],y1[point_id],z1[point_id]
#将外框移动到小球上
outline.bounds = (
x - 0.1, x + 0.1,
y - 0.1, y + 0.1,
z - 0.1, z + 0.1,
)

4.建立响应机制

figure = mlab.gcf() #获取当前窗口指针
picker = figure.on_mouse_pick(piker_callback)
mlab.title("Click on red balls") #设置窗口的标题文字 mlab.show()

科学计算三维可视化---Mlab基础(鼠标选取交互操作)科学计算三维可视化---Mlab基础(鼠标选取交互操作)

5.全部代码

import numpy as np
from mayavi import mlab #.小球场景初始化建立
# 用mlab.points3d建立红色和白色小球的集合
x1, y1, z1 = np.random.random((,)) #3行10列分给三个元素,每个都是以为数组含10元素
red_glyphs = mlab.points3d(x1,y1,z1,color=(,,),resolution=) #创建10个红球,位置为x1,y1,z1,分辨率为10的小球 x2, y2, z2 = np.random.random((,)) #3行10列分给三个元素,每个都是以为数组含10元素
white_glyphs = mlab.points3d(x2,y2,z2,color=(0.9,0.9,0.9),resolution=) #创建10个白球 # .选取框初始化建立
outline = mlab.outline(line_width=)
outline.outline_mode = "cornered"
outline.bounds = (x1[]-0.1,x1[]+0.1,
y1[]-0.1,y1[]+0.1,
z1[]-0.1,z1[]+0.1,
) #获取一个红色小球的所有顶点,我们只是想要知道每个小球的顶点数目而已,所以不用考虑其他
glyph_points = red_glyphs.glyph.glyph_source.glyph_source.output.points.to_array() #.选取回调函数的结构
def piker_callback(picker): #当鼠标点击会返回一个vtk picker对象,我们将对该对象进行处理判断
if picker.actor in red_glyphs.actor.actors:
# 确定该小球的ID,
point_id = int(picker.point_id/glyph_points.shape[]) #picker.point_id是picker对象选取的顶点ID,glyph_points.shape[]记录了82这个值,通过这个计算出小球的ID
if point_id != -: #表示有红色小球被选取了
#计算与此红色小球相关的坐标
x,y,z = x1[point_id],y1[point_id],z1[point_id]
#将外框移动到小球上
outline.bounds = (
x - 0.1, x + 0.1,
y - 0.1, y + 0.1,
z - 0.1, z + 0.1,
) figure = mlab.gcf() #获取当前窗口指针
picker = figure.on_mouse_pick(piker_callback)
mlab.title("Click on red balls") #设置窗口的标题文字 mlab.show()

6.优化

两个问题

.小球初始速度太慢
.鼠标选取不精确

科学计算三维可视化---Mlab基础(鼠标选取交互操作)

科学计算三维可视化---Mlab基础(鼠标选取交互操作)

import numpy as np
from mayavi import mlab figure = mlab.gcf() #获取当前窗口指针 figure.scene.disable_render = True
#.小球场景初始化建立
# 用mlab.points3d建立红色和白色小球的集合
x1, y1, z1 = np.random.random((,)) #3行10列分给三个元素,每个都是以为数组含10元素
red_glyphs = mlab.points3d(x1,y1,z1,color=(,,),resolution=) #创建10个红球,位置为x1,y1,z1,分辨率为10的小球 x2, y2, z2 = np.random.random((,)) #3行10列分给三个元素,每个都是以为数组含10元素
white_glyphs = mlab.points3d(x2,y2,z2,color=(0.9,0.9,0.9),resolution=) #创建10个白球 # .选取框初始化建立
outline = mlab.outline(line_width=)
outline.outline_mode = "cornered"
outline.bounds = (x1[]-0.1,x1[]+0.1,
y1[]-0.1,y1[]+0.1,
z1[]-0.1,z1[]+0.1,
) figure.scene.disable_render = False #获取一个红色小球的所有顶点,我们只是想要知道每个小球的顶点数目而已,所以不用考虑其他
glyph_points = red_glyphs.glyph.glyph_source.glyph_source.output.points.to_array() #.选取回调函数的结构
def piker_callback(picker): #当鼠标点击会返回一个vtk picker对象,我们将对该对象进行处理判断
if picker.actor in red_glyphs.actor.actors:
# 确定该小球的ID,
point_id = int(picker.point_id/glyph_points.shape[]) #picker.point_id是picker对象选取的顶点ID,glyph_points.shape[]记录了82这个值,通过这个计算出小球的ID
if point_id != -: #表示有红色小球被选取了
#计算与此红色小球相关的坐标
x,y,z = x1[point_id],y1[point_id],z1[point_id]
#将外框移动到小球上
outline.bounds = (
x - 0.1, x + 0.1,
y - 0.1, y + 0.1,
z - 0.1, z + 0.1,
) picker = figure.on_mouse_pick(piker_callback)
picker.tolerance = 0.01 #设置tolerance参数提高精确度 mlab.title("Click on red balls") #设置窗口的标题文字 mlab.show()