在熊猫中重塑长到长

时间:2021-04-22 20:12:25

Let's assume that I have the following dataframe in pandas:

我们假设我在pandas中有以下数据帧:

             AA  BB  CC     
   date
   05/03     1   2   3  
   06/03     4   5   6  
   07/03     7   8   9  
   08/03     5   7   1  

and I want to transform it to the following:

我想将其转换为以下内容:

   AA 05/03    1
   AA 06/03    4
   AA 07/03    7
   AA 08/03    5
   BB 05/03    2
   BB 06/03    5
   BB 07/03    8
   BB 08/03    7
   CC 05/03    3
   CC 06/03    6
   CC 07/03    9
   CC 08/03    1

How can I do it?

我该怎么做?

The reason of the transformation from wide to long is that, in the next stage, I would like to merge this dataframe with another one, based on dates and the initial column names (AA, BB, CC).

从宽到长转换的原因是,在下一阶段,我想根据日期和初始列名称(AA,BB,CC)将此数据帧与另一个数据帧合并。

2 个解决方案

#1


15  

unstack returns a series with a multiindex:

unstack返回一个带有multiindex的系列:

    In [38]: df.unstack()
    Out[38]: 
        date 
    AA  05/03    1
        06/03    4
        07/03    7
        08/03    5
    BB  05/03    2
        06/03    5
        07/03    8
        08/03    7
    CC  05/03    3
        06/03    6
        07/03    9
        08/03    1
    dtype: int64

You can call reset_index on the returning series:

你可以在返回的系列上调用reset_index:

In [39]: df.unstack().reset_index() 
Out[39]:        

    level_0 date    0
0   AA      05-03   1
1   AA      06-03   4
2   AA      07-03   7
3   AA      08-03   5
4   BB      05-03   2
5   BB      06-03   5
6   BB      07-03   8
7   BB      08-03   7
8   CC      05-03   3
9   CC      06-03   6
10  CC      07-03   9
11  CC      08-03   1

Or construct a dataframe with a multiindex:

或者使用multiindex构造数据框:

In [40]: pd.DataFrame(df.unstack())     
Out[40]:        

            0
    date    
AA  05-03   1
    06-03   4
    07-03   7
    08-03   5
BB  05-03   2
    06-03   5
    07-03   8
    08-03   7
CC  05-03   3
    06-03   6
    07-03   9
    08-03   1

#2


1  

Use pandas.melt to transform from wide to long:

使用pandas.melt从wide变为long:

df = pd.DataFrame({
'date' : ['05/03', '06/03', '07/03', '08/03'],
'AA' : [1, 4, 7, 5],
'BB' : [2, 5, 8, 7],
'CC' : [3, 6, 9, 1]
})
df

then we have:

然后我们有:

    date    AA  BB  CC
0   05/03   1   2   3
1   06/03   4   5   6
2   07/03   7   8   9
3   08/03   5   7   1

now set the index so that we have exactly the same df as yours:

现在设置索引,以便我们与您的df完全相同:

df = df.set_index('date')
df

gives us:

给我们:

        AA  BB  CC
date            
05/03   1   2   3
06/03   4   5   6
07/03   7   8   9
08/03   5   7   1

To convert, we just need to reset the index and then melt:

要转换,我们只需要重置索引然后融化:

df = df.reset_index()
pd.melt(df, id_vars='date', value_vars=['AA', 'BB', 'CC'])

this is the final result:

这是最终结果:

    date variable value
0   05/03   AA  1
1   06/03   AA  4
2   07/03   AA  7
3   08/03   AA  5
4   05/03   BB  2
5   06/03   BB  5
6   07/03   BB  8
7   08/03   BB  7
8   05/03   CC  3
9   06/03   CC  6
10  07/03   CC  9
11  08/03   CC  1

#1


15  

unstack returns a series with a multiindex:

unstack返回一个带有multiindex的系列:

    In [38]: df.unstack()
    Out[38]: 
        date 
    AA  05/03    1
        06/03    4
        07/03    7
        08/03    5
    BB  05/03    2
        06/03    5
        07/03    8
        08/03    7
    CC  05/03    3
        06/03    6
        07/03    9
        08/03    1
    dtype: int64

You can call reset_index on the returning series:

你可以在返回的系列上调用reset_index:

In [39]: df.unstack().reset_index() 
Out[39]:        

    level_0 date    0
0   AA      05-03   1
1   AA      06-03   4
2   AA      07-03   7
3   AA      08-03   5
4   BB      05-03   2
5   BB      06-03   5
6   BB      07-03   8
7   BB      08-03   7
8   CC      05-03   3
9   CC      06-03   6
10  CC      07-03   9
11  CC      08-03   1

Or construct a dataframe with a multiindex:

或者使用multiindex构造数据框:

In [40]: pd.DataFrame(df.unstack())     
Out[40]:        

            0
    date    
AA  05-03   1
    06-03   4
    07-03   7
    08-03   5
BB  05-03   2
    06-03   5
    07-03   8
    08-03   7
CC  05-03   3
    06-03   6
    07-03   9
    08-03   1

#2


1  

Use pandas.melt to transform from wide to long:

使用pandas.melt从wide变为long:

df = pd.DataFrame({
'date' : ['05/03', '06/03', '07/03', '08/03'],
'AA' : [1, 4, 7, 5],
'BB' : [2, 5, 8, 7],
'CC' : [3, 6, 9, 1]
})
df

then we have:

然后我们有:

    date    AA  BB  CC
0   05/03   1   2   3
1   06/03   4   5   6
2   07/03   7   8   9
3   08/03   5   7   1

now set the index so that we have exactly the same df as yours:

现在设置索引,以便我们与您的df完全相同:

df = df.set_index('date')
df

gives us:

给我们:

        AA  BB  CC
date            
05/03   1   2   3
06/03   4   5   6
07/03   7   8   9
08/03   5   7   1

To convert, we just need to reset the index and then melt:

要转换,我们只需要重置索引然后融化:

df = df.reset_index()
pd.melt(df, id_vars='date', value_vars=['AA', 'BB', 'CC'])

this is the final result:

这是最终结果:

    date variable value
0   05/03   AA  1
1   06/03   AA  4
2   07/03   AA  7
3   08/03   AA  5
4   05/03   BB  2
5   06/03   BB  5
6   07/03   BB  8
7   08/03   BB  7
8   05/03   CC  3
9   06/03   CC  6
10  07/03   CC  9
11  08/03   CC  1