机器学习实战 之 KNN算法

时间:2022-09-10 13:26:22

现在 机器学习 这么火,小编也忍不住想学习一把。注意,小编是零基础哦。

所以,第一步,推荐买一本机器学习的书,我选的是Peter harrigton 的《机器学习实战》。这本书是基于python 2.7的,但是我安装的是python 3.6.2.

所以很关键的是,你必须得有一定的python基础。这里我推荐runoob的py3教程,通俗易懂。http://www.runoob.com/python3/python3-tutorial.html

注意:python2和python3是不兼容的

python是面向对象的,面向对象是python的精髓。

————————————————————严肃的分割线......——————————————————————————————

         言归正传,首先,我们要安装一些包,比如numpy和matplotlib。小编推荐用anaconda,这是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。下载地址https://www.anaconda.com/download/。这就免去安装各种包的烦恼。

  界面如下:里面有一个spyder,这是一款很好用的IDE

机器学习实战  之 KNN算法

左边是文本编辑区,右下角是命令行。右上角是变量区,很方便啊,有木有!

下面就是KNN算法的讲解了。

————————————————————————分割线————————————————————————————————————————————————————

        K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成反比。
  
实例:手写识别>
      目录下解压digits.zip,得到训练样集本和测试样集本。kNN.py是核心程序。随便点开一个0_0.txt文件,可以看到
00000000000001111000000000000000
00000000000011111110000000000000
00000000001111111111000000000000
00000001111111111111100000000000
00000001111111011111100000000000
00000011111110000011110000000000
00000011111110000000111000000000
00000011111110000000111100000000
00000011111110000000011100000000
00000011111110000000011100000000
00000011111100000000011110000000
00000011111100000000001110000000
00000011111100000000001110000000
00000001111110000000000111000000
00000001111110000000000111000000
00000001111110000000000111000000
00000001111110000000000111000000
00000011111110000000001111000000
00000011110110000000001111000000
00000011110000000000011110000000
00000001111000000000001111000000
00000001111000000000011111000000
00000001111000000000111110000000
00000001111000000001111100000000
00000000111000000111111000000000
00000000111100011111110000000000
00000000111111111111110000000000
00000000011111111111110000000000
00000000011111111111100000000000
00000000001111111110000000000000
00000000000111110000000000000000

这就是经过数字图像处理的手写字体了,格式是32x32。

  核心函数如下:
#inX:用于分类的输入向量。即将对其进行分类。
#dataSet:训练样本集
#labels:标签向量
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]#得到训练样本集的行数,即有几个训练数据
diffMat = tile(inX, (dataSetSize,1)) - dataSet #tile:numpy中的函数。tile将原来的一个数组,扩充成了dataSetSize个一样的数组。diffMat得到了目标与训练数值之间的差值。
sqDiffMat = diffMat**2#差值的平方
sqDistances = sqDiffMat.sum(axis=1)#对应列相乘,即距离和
distances = sqDistances**0.5 #开根号 即距离
sortedDistIndicies = distances.argsort()#升序排列
classCount={} #创建一个字典classCount 选择距离最小的k个点,
for i in range(k): #k次遍历
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True) #原书是iteritems() py3改为items()
return sortedClassCount[0][0]
#计算完所有点后,数据按从小到大排序,然后确定前k个距离最小元素所在的主要分类,输入k总是正整数,最后,将classCount字典分解为元组列表,然后此处的排序为逆序,
返回发生频率最高的元素标签。

  我们要知道的是在python中。classfiy0就是一个函数,而inX, dataSet, labels, k是输入参数,其中k就是KNN算法的K。

  shape是numpy库中的函数。.shape用于计算array各维度的长度,在python中都是从0开始的。

  tile 也是 numpy中的函数,它可以在行和列上重复一个矩阵。

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABIYAAAHCCAYAAACaHsLdAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAHUhSURBVHhe7b3bkyXJfd93/jK/OuSHjg5FWA/SeXA4wgpbZtimTCvI4YxDWrFttiySMWbM0AJBUeZQ5AybIJrkiACnl+TyMuw1gR7uisACJLho3HqxWOxisbgOgAXSeamsk5WV16o63afqfD4RH0yfysxfZVWd7u38our0SgAAAAAAAAAAwF5CMAQAAAAAAAAAsKcQDAEAAAAAAAAA7CkEQwAAAAAAAAAAewrBEAAAAAAAAADAnkIwBAAAAAAAAACwpxAMAQAAAAAAAADsKQRDAAAAAAAAAAB7CsEQAAAAAAAAAMCeQjAEAAAAAAAAALCnEAwBAAAAAAAAAOwpBEMAAAAAAAAAAHsKwRAAAAAAAAAAwJ5CMAQAAAAAAAAAsKcQDAEAAAAAAAAA7CkEQwAAAAAAAAAAe8rkwdCXr/4eERERERERERFnIMEQIiIiIiIiIuKeSjBU6Y994cdanz9/joiIiIiIiIg4WwmGKiUYQkRERERERMSlSDBUKcEQIiIiIiIiIi5FgqFKCYYQERERERERcSkSDFVKMISIiIiIiIiIS5FgqFKCof3wc+98X3zsi++LV994X/ztW++Lz33tffHJN98Xn/rK94P9EREREREREecowVClBEPj/Na3vyte/ezb4hXpJ7/wrvjMG++Jz33lm+Lzb31TvP7l98SnvviuePXybd1H9Q3VuA5f/vwPxK+/+iPxF18Q4q+/LMSn3xbiyetCPHz1ezc+N0RERERERMSpJBiqlGBonF/52rfET/zaK+LWb35C/PwfvC7+w599UXz442+K33/2pnj4l18Uv/TkdfGvTl4TP/WbnxRvvfutYI1t+V3pu9/6nvYvLr8v/uBv3xffe1+Ib39fiPd/KMTHr4T4+Zfek/P7pHj9y18nHEJERERERMTZSzBU6dhg6PKVl8RLL1lfEZeBPtN4KV7Z6j5s/cZXLgN9+n7la98U//xXL8TvPvuqeO0rPxCvv/2++NLX3xdvfet98e633xfvfecH4pNvfl/8+49/X3ztm+Ea21IFQief+JH47U/+SDz+ux+Jly6F+PgbQjz8hBCf/7oQH/uSEL//6R+KL779HR0OqTuHQnUQERERERER5yLBUKXTBENThzU2pHlZvPaWv22b4ZOy2U9hMPTm174p/qcP/pW48+gT4hc+cinu//Eb4lf+/C3xq3/xlvjgn74hfunsUvzbx6+L/+PxF8RXv/6dYI1tqYKo//DsfXHxxo/Em98S4u3vyPfzN4X4tVeEuPdHb4if+8Mvif/ryZviF/7T34n/8YMX4uhDnxRPP/WVYC1ERERERETEOUgwVCnBkG9lMPTON8Q/+3/+Uvzz//hp8S9/70r8zEfeEv/nk3e06mu17Sd+8+/Ej//qx/XdRaEa21IFQ7/ysefi9Xd+KH74I6H95veEePCqECcff0f84h9eip85fV2cvHylPfrdz4o/eIVgCBEREREREecrwVCl2wmGNsHOyy+rf40vv/aWM2bzWnv5iun3ymviNWeM2aZCmk0w9NprL7dtnRpvvSZetmO04WApOt7tVxgMffmdb4j/7hf/VPzvv/sl8X8/fS5+8S+/11FtU22qj+obqrEt3/nGc/Hvzr8t/u6r74vvvy+0X//uj8QH/+q5+ONPf0P88h99VvzrD31KfOyz74mvfuuH4tde/pp48bV3g7UQERERERER5yDBUKXbDoZMMPNWE/Y0r22A8/Jr4q1OHdvfH+9us2HOJugx+y59HRtvbbaXBkNvvyf+m59/Ufzkb31W/NxL39RBkKvaptpUH9U3VGNbvvON74p7f/Z18dqb3xff+YHQqgDo/ktfFT/9W58WP/HgVfHj/+8r4l/8x0+I19/+vn4E7snfvBOshYiIiIiIiDgHCYYq3W4wtNnu3yXUCYJsUNSGMXZ8KBjyg56mT3vH0SbQsft85bJgfDOm3V4YDL3x1ffEPzn+iPhfHrwmjj76VXH84rsd1TbVpvqovqEa2/Lt974rfuGPvipe+dL3xDeeC+3XpV/+xg/Fl979gfji174vnr7+LfFv/vAr4jNvvy9+6U/eEB95xb+DChEREREREXE+EgxVet3BkAlppE2Qo4Kit5pHu9q2YGiTCXZuLBj6uvhHP/N74n/45Wfip377Uvz073y+o9qm2lQf1TdUY1u+/d53xL/56BviY5//rvjCO98Tn/zie+KvX/+qOP/kF8Wf/vXr4rUvvKPbfvajXxafeut98YtnXxSPn305WAsRERERERFxDhIMVXo9wVAohNk8XqY/h8h5rKz36FlRzVh77vW4YOjqra+Lf/gvPyT+23sv6zuDQqo21Uf1DdXYll/9+rfF0e9/XvzlZ78tPvfOD8Sn3vi2+JsvvCcu/v6r4v/79JfFp6++odv+9e99QXzizffFL3zkc+L3Pn4VrIWIiIiIiIg4BwmGKt1uMNR1c0dQo73LJ9Bm7yLS6pCmINgp/PDpaYOhd8XB7Udi/Qt/Jn7sV/+z+J9/7ZP6L5Qp1ddqm2pTfVTfUI1tqYKhf/U7fy/+7DPfEp/72vvi9a9+T/zdm98Rn7r6pvjEF94Tn/nKd3XbT5/8vfjI37wrXvidvxWnf/XFYC1ERERERETEOUgwVOl2gyF/u6cNhjp3C920dcHQl956V/xXP/kb4r/+2TPx3//yM/G//sbfitsf/oJW/Zn6f/Yrr4h/dPyi7qP6hmpsy7fe/Za4/Vuf1n+B7FNf/q742N+/I/78E1fiD//qM+L3/vwT4vzTb+q2H3/wSf3XyW79xt+IP7j4UrAWIiIiIiIi4hwkGKp0mmDI6t+NkwqG7ONigTuJbkQ758bSYOgrXxP/5f/2QPwXP/7r4h/c/h3xD48+Kv7xv/0T8U9+/k/FP/65P9Gh0D+4/WHdR/UN1diWKhj6qd/8hDh77T3x9+/8SHzm7R/qP13/t2/9QHz6K98Xn5Ffq7af/I1PiM9++T3d/71vfidYCxEREREREXEOEgxVOjYY2ne/8a1viz9/9bPiT559VvzZq58XTz/xJXH+2hvi5U+9Ic6lf/nalfjz//wF3Uf1DdXYll/52rfEv/j1V8XP/t5nxK/+6ZfEyV+9JR6/+o5Wfa22qTbVR/UN1UBERERERESckwRDlRIMLVd19496NOw/XVyJP/6bN8X5374tLj77rlZ9rbapNtWHO4UQERERERFxCRIMVUowhIiIiIiIiIhLkWCoUoIhRERERERERFyKBEOVEgwhIiIiIiIi4lIkGKqUYAgRERERERERlyLBUKUEQ4iIiIiIiIi4FAmGKiUYQkRERERERMSlSDBUKcEQIiIiIiIiIi5FgqFKCYYQERERERERcSkSDFVKMISIiIiIiIiIS5FgqFKCIURERERERERcigRDlRIMISIiIiIiIuJSJBiqlGAIEREREREREZciwVClBEOIiIiIiIiIuBQJhiolGEJERERERETEpUgwVCnBECIiIiIiIiIuRYKhSgmGEBEREREREXEpEgxVSjCEiIiIiIiIiEuRYKhSNxgCAAAAAAAAAJgzBEOVEgwBAAAAAAAAwFIgGKqUYAgAAAAAAAAAlgLBUKUEQwAAAAAAAACwFAiGKiUYAgAAAAAAAIClQDBUKcEQAAAAAAAAACwFgqFKCYYAAAAAAAAAYCnMNhg6u7cW63Xj7QfiWa/PU/Hotmq/K856bcNdRjD0KXH8T/+dWP3T3xanX2w2AQAAAAAAAMDeMctgSIdCbRjUBED3Hm/6PLkr1utb4tFD9S/BUJ/dDoYuHqi5/TtxfNFsAAAAAAAAAICtMMNg6LG4r0KfC2ebDYL0NtXehEF6+44FQxfHYrU6FtHMY2z7AiAYAgAAAAAAALge5hcM9cIe+8jYWtx/4vQL9h3v6GBIcnG8EqvVoTi9ajZ4jG1PYUMXY/eOId12fCaOj0374Udfbu4ssiFNc6fRg5fFadNn02Z5s9PW3YdtOxMX7V1L0gef0q1XH/1tZ5xr6Z1NV+L0cCXncyGOV+oc+efJtjcvFSpoOzyVLc3XstGcX9XP9N/UCNXf1Ls6PZSv/dDO9D0ccrEAAAAAAAAAtsw8gyH7GNnFA3FHB0ImHJpLMKQwIYIXUjiMbY+RDYY6gYyjDm+cMKejrZNrt8HQb4vDTnhkwqWpgiE3DNIhjw1+SoKhJsTZnF8zxgQ7tv6mRjcMMiFQtD4AAAAAAADAjjHbYOjs4S2xeXxsfsGQ5upUHDZBRJCx7QlMCBQOhlSwsWm3dwm5wdBmnB1z+NE35Ysz/bW9A0jRae/cTaTuGpKH0IRBpt3gzqOOTPCTa9fBkAl5dOCjt/eDoe68VBjkBVFtB3csAAAAAAAAwO4x00fJ/L9Epj5XaL7BUPQzg8a2J9gEP80GidlmAhv99fHL4sqGOW4wpLc3NGGQCnZsyNMNXjbtbjDUDVe6zC8Ycrbpa9JcD/drAAAAAAAAgB1kfsFQ+/iYvy0QAO1yMKRDCD9kcBjbnmGaYMgLeorvGOru12dWwZAOf/qfY6T6qxrcLQQAAAAAAAC7zPyCIWn2z9VbU8FQEzDVBkdTBENjP1w61x4n/RlAxcFQTzMm314WDPU/ayjdf0NZMNQ+6mXvuBoRDHUfHWvQ+zwWx4dDrhEAAAAAAADA9THLYMj9S2TaTijktbV6f+L+poIhJ3wIMrY9yRaCIfexMsUXXxaHnT42FFKUBUP9/UwVDEnax++U8jy67c65TQVDZmyjHwppmr9aFmwDAAAAAAAA2B1mGgzdnKODoVnTBDZ+GLQ3BIKnIIG/TgYAAAAAAACwgxAMVUowRDCUC3z042XuXUoAAAAAAAAAOwrBUKUEQwRDsWDIfPYToRAAAAAAAADMB4KhSvc7GAIAAAAAAACAJUEwVCnBEAAAAAAAAAAsBYKhSgmGAAAAAAAAAGApEAxV6gZDz58/R0REREREREScrQRDlRIMISIiIiIiIuJSJBiqlGAIEREREREREZciwVClBEOI07p6YRXcPtZc3TH7HTvnKcb7hvopU2375K6fhymu4XUdI+8pRERExGVJMFQpwRDitNYsMlXfkLG+oe2uJX18h4zxLa2h+oUM9Y0ZGh8yNHauho5n28fonktfv5/72jXWlhpjDe0npNunxNCYIXUQERERcXclGKqUYAg3nouj1YE4uexuvzw5EKuVXIRpj8S507Z91ZzsvqVH54E+Y1T1hx+Tu0AtNVYntN3V7ePWK9WvVaM7NmRJn5g1Y4fu5/JF+R5ujmX1wg28h9t9Sz807D3sH7v/emrd+rGv7evYXGq3W3PtY/Xrb3t/iIiIiHi9zjYYOru3Fut14+0H4lmn/bG4b9uU9x47beMkGJqDl+LkQC6+AgHGdKGN2cfByWWvTe8jEcicH9n9Sw9OxGWgT8rS8bpfZTDUPT9G/xhNn/i5U6HCwYtqjDxHH1iJo4twP+XQBWZsnLs9Vbt2vzX9S/qW9qnVH19Sxx1j1cFQIpA5/5BT4wMD3sOF43U/bx7d0Mpo3m/dsWq7/zqm22+obi33X7++36fEVF+3rabmRvN9mgoA/brqdUy3HyIiIiLOw1kGQzoUasOgp+LRbTf8Ma/vP7H9TUh05+HT5vU4CYZuXh1MJAOVeDDUen6Ubs+YmkMqGNJhTTuumWdFeFMzfnAwlB2T2a9czJswyCw4Y8FQaBFZurB0F6LumNjXvqm2kDX9S/rW7t+1tn6qf6wtFQzpsKYNc8w1rrmrp2Z8NBiq2J9yyDmo1dZR/1rd7X4/f5s7JtQe2u5b2q/1Qv4cfOFAnLyo/i37eZjaR/X+EREREXEnnGEwpIKeW+LRhbPtyV2x9rc5doOkcY4OhnKBxNj2PTAfDBU45jxenoiDwCNk1ni4Enj0TM8jXqtr3fjtBUPSxDnYBEPqkSDZ53P9PsrQIrJkYen3cV/HvvYt2Y+rXzdkqG9Mf6y1pq9raJw11N81NCYevgSuqQ0XIte5a934bQdDse1DdM+pb6w9VMPfltru6vax9WOafupaND8D9TUo+3m4GV+2HRERERF33/kFQzoEuivO2m3NHUNr9y6hrjsVDEn1gj0RBoxtj2vu9Dg6VwGDquHXse3OGBU82BBGfX103uxf9TP9NzVC9Tf1dOjQC2NM39AjWb5m/Kbuxs0xdPskFjqJYMgenzYQQOl9JIKpaLjS26c9f945j1k5Xh/HtoKhZt+d66YXl3KfQbvn2m5vxzrb/W2+fh/3dexrX9UWM9Y/9HVoW6yGa0kfq98399o31R5ri4YvvQBBvg/0Y0jyPZh4ZLC1cvwUwZB/jKnzMZWpfQxpy81ZtQ/dp7YwGPLrZOsiIiIi4iycZzBkQ56LB+KODoT8x8dcd/NRMhtgxAKBse1hbZCwCVJ0eOA9mtSp6QdDcp8qDNjs3w0IbP1NDdPPLjhMCBStX6iumRvTC1E8I+1+mNI9P5ttqSBLzy8WDNla+o6bzfkruo6V4wcHQ7Jua+I8h49TzucD8v2l7v74nJxjYLFpF5PuvzHdcf4Yf1vqa99YW8n2UJ9cu29JH6vqmzM0zhrq7xoakwyG7GNg+vrK996FuubqX69vyMrx0WDImX/sM4pixxbbPtbOnDz9fu5r11Cb3RYbl2tXptq0mWAot29EREREnLezDYbOHt5yHh+LBUP2biL3DqNxThUMaZvFfTRkGNveMxAidIKZTLsTpmzCGTPGDYa6IYUKg7wgqg0T3LHumLTbC4a6c9Xqc+xuy885Fwyd6/DF1gyds4iV44cEQ12bO78i5zp8HeQYu8B0Q4BGdyEZWlSmFpp+m3od2hb62jfWVrI91CfX7lvSx+r3zb0OWbM/ZS4YOtfhjHwP6se/5HuwMhgqHR8Khrqq95vsEwiHYsdcey6GmNpHbZvdlpv30H1qCYYQERER99qZPkrmPxpm7grygyHzl8vinz00xG0EQ9EAY2x7z0CI0IQNZlGVaXfClLpgyNmm59zM1/26wq0FQ+359J0wGFL1OnP3zk/KyvHjgyFp4jz610Ev4uVCMWTJX42KbUvp93dfx2ql9lEyRn0dMtQ3Zkkfq7uPmKFx1lB/19CY9KNkclwniDHhTHEwVDE+HwxJA6FG7Ljs9li7q55nQb+QdmyoRqqmbXP7hLaFLKkbNREMxcaWzgsRERERd9/5BUPt42P+tu5dQc86dxRN52TBULPIjwYCY9uD3kAwpMOWcLCiaqQClpjbDYbcuYZ0jzfUngiGmuCpf34S83StHD9FMKSPJVI/eJzO42O5z4IJLShrFpm5vrH21LghY3xL+tbU8y0dq/rZvv4Yty1k9Nq1j3/52wrfw5XjS4Ih82hZd3zs2GLnI2TuHPna/qlxdnuq3W3z+8XGKYe2aQmGEBEREffa+QVD0vSfqy8MhZqAqfYxsymCIb1gTwQQY9vjZoKfpr1d7DdBxJhgKBhO6H0eiaODyDHY/cYCEz2PzPGHgh/XYLt3/BFzwVQ0GJLq8xE7363mLqDQ/MvGO32DbfH6HZvrEA7B3OvubFcLzOZukG0GQyX9htSPtZfOSzl0biFVv1JD411r+qaunQ5r2jt+5PtAfXh0r6+5CygUNpSNd/qmgqEmaHLvSIsdn7+95DyU9KnR1hs6x9R8hrZpI8FQbFzNvBARERFx951lMOT+JTKtEwrZx8raNsf+XUZq+zUHQ4MCC8dce1KzmI8HQ9I2lFHK/bjtzr5TwZAZ25gKJiKBRjYYkppwzGpDosD+q9ojfdzzo2zm1zmPjqlgqFc/2G/Tp7+PkvHGeDAUr989r/FjNOcgEM45wZBa1IceIbOqxWSJoXH+tpB+v5JxsT6l+1SO2U+JtWNVf39MaJtrOtST7x8V5jQ1wv02ffqPiJWMN4aCIb3Njg3UV9vc17Ftqe3KVFtI2z/3r/91zFif2u3KcJt3HVrl97X+7KfwuNC21HZERERE3H1nGgzdnKODoUVrAodomNBqgqF8v921e+dO13QwVKaukbsrKmM8GBpb31zn1ON0JQ5ZSJaMUX2s7ja3j6/f3zc3XmlruH3dbaVOPdZuCxnrl7vbq0TziNcmZBhi9o6hAkvOQcm2nHZM7F/f1D5SbcpQe2yb1W8bYq7OVPtBRERExOuVYKhSgqGUZcFQKlSZj+ZYQ8HL+GCoqT3yHGXvGBpYXx/f7K8fphwfDMn3mLobpfMh0/VOEQwhIiIiImJagqFKCYZSpoOh9jGlxYQK6s6n/l035m6c5lhrH/vTj+vJcYODJfv5QY1+nUnqD32UEeeiudtHvk+0lddbf16NHDc40JHvsXbfY+ogIiIiImKJBEOVEgwhIiIiIiIi4lIkGKqUYAgRERERERERlyLBUKUEQ4iIiIiIiIi4FAmGKnWDIQAAAAAAAACAOUMwVCnBEAAAAAAAAAAsBYKhSgmGAAAAAAAAAGApEAxVSjAEAAAAAAAAAEuBYKhSgiEAAAAAAAAAWAoEQ5USDAEAAAAAAADAUiAYqnS/gqELcbw6FKdXzcuGq9NDsVqtGo9lLwDYDdT3rP3elB77352qne9ZAAAAAADYMNtg6OzeWqzXjbcfiGdO27OHtzZtynuPO2PHuD/B0JU4PVyJQz8VkuhgqLfg3HBx7CxMD09lpWmhfhrqp9mX+rpf4PvUBLuEQwAAAAAAYJhlMKRDoTYMeioe3U6FP4/F/fVa3H8Saqt3X4IhvXiMLDpTwZBejLbjTLiUCpFqoX4a6qfZp/q6b7Bt+nkBAAAAAMB8mWEwpIKeW+LRhbPtyV2x9re1muDozsOngbZ69yIYujoVh4FHyCzxYCjw6NnFsVglatVB/TTUT7Nf9ePBkCTzPQ4AAAAAAPvD/IIhHQLdFWfttuaOodhdQRcPxJ1oaFTvFMGQXrDZR0G8Rzra0EUv+Ewf93GuXLsiVl+P7T1CohabgX20dyX0iQZDek5u/ebOBFk/tj6tgvppqJ9mz+ong6FmbOhRUQAAAAAA2C/mGQzZx8h06KMCIRMOucGQ+xlEU90tpBwbDKlQxV2r6cWbE8KY8MbZ5v0/+yXt8fomBOqsFdVi0wuB1JjUgjEZDHXmpfZlFqDR9WkN1E9D/TR7Vj8dDKkSke9jAAAAAADYK2YbDJ3pD5i2dwL1g6GNuc8gqnNsMNTDXexJTPDj3hXQDXNy7T28+t3FollUdkOg0LYuuWDoQs/RhlXTL4ypH4H6afasflEwJOvpMgAAAAAAsLfM9FGytfeXyDIfMN17/Gy4o4Oh5v/p13f9WJ3FWe7/xc+15+qb9iZYcr9uMQvNwcGQv79ccFUD9dNQP82e1ScYAgAAAACAEuYXDLWPj/nbEsGP+/jZSMcFQ2YR1wld1GLPWZyNC4by9d3gR9XqB0AjgqH28ZbmtSIYPg2E+mmon2bP6vMoGQAAAAAAlDC/YEg65M/V9z5nqAmYau8kmjYYMq+3Fwz162t0WHQsjg/t4yhd9D4SdxKk5qAXo+1YEzL1+zbzGrBgpn4a6qfZj/oG3TfSZsemAmAAAAAAANgPZhkMuX+JTNsJhbw2afyvlan26wyG5HJMhSp6Uag8FKenU94xlK9vaBamsTqhOxMc0nNoFqt2DsF+mz6JQ4lA/TTUT7MP9Q3JYEh/j4eDYQAAAAAA2C9mGgzdnGODod3ABEOpRWn3zoQuuXCqBBNgbW9hSv001E8z9/qKeDBkwiXuFgIAAAAAAAXBUKVLCIZSoc+G5s6EwMJSL2pHBUNN7ewchkL9NNRPM/f6hlgwpL9/t7xvAAAAAACYDwRDlc45GNILRfX4SfGiUN1Z1L+rwdzt0NSq/ZwU+5eVRt5xFIX6aaifZu717WOi1t5+VHv9ZxsBAAAAAMByIRiqdM7BEAAAAAAAAACAC8FQpQRDAAAAAAAAALAUCIYqJRgCAAAAAAAAgKVAMFSpGww9f/4cEREREREREXG2EgxVSjCEiIiIiIiIiEuRYKhSgiFEREREREREXIoEQ5USDCEuy9ULq+D2sebqjtnv2DlPMd431E+Zatsnr/M8XNe+uLaIiIiIy5BgqFKCIcRlWbO4VX1DxvqGtruW9PEdMsa3tIbqFzLUN2ZofMjQ2LkaOp7rOkZ/P/b8+rp9SgyNGVIHEREREXdPgqFKCYZw47k4Wh2Ik8vu9suTA7FaycWX9kicO23bV83J7lt6dB7oU2r4+Lar2mfqnOXa07oL41JjdULbXd0+br1S/Vo1umNDlvSJWTN26H4uX5TfQ82xrF64ge+hdt/SDw37HvKP3X+9Dbe9j5s4JkRERETcvrMNhs7urcV63Xj7gXgW6PPlq6fi0W3V55Z4dBFqr5dgaA5eipMDuaALBAjThTZmHwcnl702vY9EIHN+ZPcvPTgRl4E+KUvH636Dg6H48aXOb5np8eYaxWtn2188EAcvqnnL/XxgJY4uwv2UQxe2sXHu9lTt2v3W9C/pW9qnVn98SR13jFUHQ4lA5vxDTo0PDPgeKhyv+wXnYd5bqdDKP7Z2fwHdfkN16wyruXvHhIiIiIjX4yyDIR0KtWFQE/7ce9zr9+zhLdnvlrhDMLQodTCQDFQKgovzoxHBRnoOqWBIhzXtuGaeFeFNzfgxwVD0+PR5OxAnJwPPX9H43HnJHLdczJswSPZLBEOhxWvpgtZdALtjYl/7ptpC1vQv6Vu7f9fa+qn+sbZUMKTDmjbMMde45q6emvHBYOhCvndfkO/hF9W/Zd8DQ87BGKtrzuCYEBEREXF7zjAYeizu+0HPk7uBu4Jsv0D/EY4OhnKBxNj2PTAfDBU45jxenoiDxCNW8WAo8GiWDUqKHteqGz84GIoen/MY16DzVzE+c45T7ZtgSD0SJPt8rt9HGVq8lixo/T7u69jXviX7cfXrhgz1jemPtdb0dQ2Ns4b6u4bGxIOhwDW1oUbkOnetG98PhtT45n2rx5V9D8SOM7Z9jG5Ne45jmn67f0yIiIiIuF3nFwzpEOiuOGu32cfF1uL+k00/fVeRvotox4IhqV6wJxa9Y9vjmjstjs7lQsA+itSpY9udMWoBb0MY9fXRebN/1c/039QI1d/U04FJLwwwfcOPLHU14zd1N26OodsnscBJBBP2+LSBACoXTEWDod4+7fnzznnMyvH6OAYEQ7nj0ybOX5HZ8ebY4u+LQLte1MpjDtrdl93ejnW2+9t8/T7u69jXvqotZqx/6OvQtlgN15I+Vr9v7rVvqj3WFg2GesGFfB/ox5/k90DikcHWyvHBO4ashSGKf4yp8zFWVTtVP7vvHTwmRERERNy+8wyG7GNkFw/EHR0ImXCoDYb0dhse7V4wpLQBRiwQGNse1gYJmyBFhwdtCGDaOzXVAt4NhuQ+1WJ8s393gW7rb2qYfnahYUKgaP1Cdc2xwUWk3Q9Tuudnsy0VZOn5xYIhW0vf8bI5f0XXsXL80GAod3za3PnNWTA+eh4bw+3yfHxAvr/V3R+fk+cosMi1i1j335juOH+Mvy31tW+srWR7qE+u3bekj1X1zRkaZw31dw2NSQZD9jEwfX3le/9CXXP1r9c3ZOX4McFQ7Nhi28dq66bqZ/e9Y8eEiIiIiNfjbIOhM/X5QW3g4wZD5us7D582Y3YzGNI2i/voInxse89AiOCGDUXBkFk0bMIZM8bMITBeh0FeENUu5t2x7pi02wuGunPV6nPsbsvPORcMnav2tmbonEWsHD8sGCq8Jrnzm7NgfO46h9vlNbQLWzcEaHQXsKHFbGqB67ep16Ftoa99Y20l20N9cu2+JX2sft/c65A1+1PmgqFz1d4+/iXfs5XBUOn4OQVD1lT97L4JhhARERH30pk+SuZ++LRShT9NMOTeUdS27XYwFF0gj23vGQgRmrDBLJ4z7c5ivi4YcrbpOTfzdb+ucGvBUHs+fScMhlS9ztwDd1HFrBy/b8GQXsTLBWpI81fKuuPV9pJtKf3+7utYrdQ+Ssaor0OG+sYs6WN19xEzNM4a6u8aGpN+lEyO6wR+KgyU3wOlwVDF+KHBUOy47PZYu6ueZ0E/39SYbL0tHxMiIiIi7qbzC4bax8f8bebRsc6fsfftBEbDnCwYahb50UBgbHvQTPCTa9f7NIuG4mBIhy3hYEXVyAYQAXOBgdaZa3F7b64h3eMNtTfzCwUyTfDUPz+JebpWjl9EMJSYf7DdeXws/gHGxtBCtmZxm+sba0+NGzLGt6RvTT3f0rGqn+3rj3HbQkavXfv4l7+t8L1YOZ5gaGNsrN0+ZK6IiIiIuBvOLxiSlv65emPkjqEmYOp+kHXeKYIhvWBPBBBj2+MGghu1QPeCoXax3QQRY4KhYDih93kkjg4ix2D3GwsO9Dwyx58LHoLt3vFHzAVTqUBDn4/Y+W41dwGF5l823ukbbIvXV+aOT5s8v+n62tz16byvKtrVwra5G2SbwVBJvyH1Y+2l81IOnVtI1a/U0HjXmr6pa6fDmvaOH/k+UB8e3etr7gIKhRxl452+lcFQ7Pj87SXnoaSPb2pMtt41HBMiIiIi7p6zDIbcv0SmjYZCyh0LhgYFFo7ZBXVKs5iOB0PSNpRRyv247c6+U8GQGduYCiYigUY2GJKacMxqQ6LA/qvaI338kKSZX+c8OqaCoV79YL9Nn/4+SsYb48FQqr40enyBc6P1Q7pY/dLxUj2HwPZcuxMMqUV96BEyq1rElhga528L6fcrGRfrU7pP5Zj9lFg7VvX3x4S2uaZDPfk+UmFOUyPcb9On/4hYyXhjPxjyxrbK92Lz5+7V603/+LbUdmWqLWV9zes7JkRERETcTWcaDN2co4OhRSsXGHLhHwtMNppgKN9vd+3eudM1HQyVqWukgpEC48FQvn7q+EocN3/zPqq+W6jSIQvYkjGqj9Xd5vbx9fv75sYrbQ23r7ut1KnH2m0hY/1yd3uVqGs44cYQk3cMFVpyDkq2lRqrZ/XbhpirM9V+EBEREfF6JBiqlGAoZVkwNDZ02A3NsYaCl/HBUFN75DnK3jGUrB8/vrzj5q/PX2Jsrh3n7/hgSL4H1V0wnQ+ZrneKYAgRERERcdclGKqUYCilCQRiwZAOKtSjQ4tZ1Ks7n/p3xZi7ZZpjrX3sTz+uJ8cNDpbs5/s0+nWq6oePL+kk80+ds1w7LkFzt498H2krr7f+nBw5bnCgI99j7b7H1EFEREREnIcEQ5USDCEiIiIiIiLiUiQYqpRgCBERERERERGXIsFQpQRDiIiIiIiIiLgUCYYqdYMhAAAAAAAAAIA5QzBUKcEQAAAAAAAAACwFgqFKCYYAAAAAAAAAYCkQDFVKMAQAAAAAAAAAS4FgqFKCIQAAAAAAAABYCgRDlRIMAQAAAAAAAMBSIBiqdL+CoQtxvDoUp1fNy4ar00OxWq0aj2WvLrn2m0Udk52b9NifXUn7rh0TAAAAAAAAwDBmGwyd3VuL9brx9gPxzGl79vDWpq3xzsOnnfFD3Z9g6EqcHq7EoZ8KSXTw0wtMNuTaL46d4OXwVO5pWkrr6365eQbaTfBFOAQAAAAAAADzZ5bBkA6F2jDoqXh0W76+97ht18GQ83pK9yUY0uFHJFQZEwzpsKWta8KnVK1aauoPDYa2MW8AAAAAAACAm2CGwdBjcX99Szy6cLY9uSvWzjaCoZFcnYrDwCNkluHBUODRtItjsUrsq466+sODIUnmHAEAAAAAAADMgfkFQzoEuivO2m3NHUPrtbj/xGzb9WBIBw72USfvkaQ2VNGBhunjPs6Va1fE6uuxvUegzGfq9PaReAQrHvwYou16zu7+mztv5P4T5cqprD8qGGpqhx61AwAAAAAAAJgL8wyG7GNkFw/EHR0ImXCoEww5ny/kfwbRGMcGQyo0cbMGHT44IYwJb5xt3p0pJe3x+iYE6mQdKkzxQiA1JhV4RIOfhmi7uy89bzUXE7AkypVTWX9cMJQ/DwAAAAAAAAC7zmyDoTMd/tjHx7rBUFf16Nl04dDYYKiHF8yY4Me966Ub5uTae3j1u2FH6K6X/J0wY4OhC30MNsyaPhgqrT9JMOScWwAAAAAAAIC5MdNHyfygx4Q/4WBI2nv8bLijg6HmThbzmFejHwzlwohUipKpb9qbYMn9umXLwZA/n1ywVUNlfYIhAAAAAAAA2HfmFwy1j4/52+LBj3m0bBeCIRNSdEIX746eccFQvr6s0AY/qlY/ANpiMNQ+3tW8VgTDqYFU1p8kGEq0AwAAAAAAAOw68wuGpLk/V9+xCZLuPHwa3F4bGE0bDJnX2wuG+vU1Oiw6FseH4b+qpfeRuBNmzBx12NLWNiFUv28z7wGBUVl9w7hgKB+gAQAAAAAAAOw6swyG3L9EpvVCIR0c2TZp8BGzGwmGmtBEhx7KQ3F6OuUdQ/n6hiZ4idUJ3XnjMG6OTVhj5xjst+mT2E2EkvqGUcGQPkfhYA0AAAAAAABgLsw0GLo5xwZDu4EJhlKhS/fOmy5jw6sSTMC13eBleDDE3UIAAAAAAACwDAiGKl1CMJQKfTY0d94EgpHtB0PNvrNzHMfQYEgf35bnBgAAAAAAAHAdEAxVOudgSAcd6vGq4lBD3VnUv2vH3M3T1Ap8DlCuPYn9y2KjgqUU9vOLGnv7KWmf6MOyAQAAAAAAAG4YgqFK5xwMAQAAAAAAAAC4EAxVSjAEAAAAAAAAAEuBYKhSgiEAAAAAAAAAWAoEQ5W6wdDz588REREREREREWcrwVClBEOIiIiIiIiIuBQJhiolGEJERERERETEpUgwVCnBEOKyXL2wCm4fa67umP2OnfMU431D/ZSptn3yOs/Dde2La4uIiIi4DAmGKiUYQlyWNYtb1TdkrG9ou2tJH98hY3xLa6h+IUN9Y4bGhwyNnauh47muY/T3Y8+vr9unxNCYIXUQERERcfckGKqUYAg3nouj1YE4uexuvzw5EKuVXHxpj8S507Z91ZzsvqVH54E+pYaPb7uqfabOWa49rbswLjVWJ7Td1e3j1ivVr1WjOzZkSZ+YNWOH7ufyRfk91BzL6oUb+B5q9y390LDvIf/Y/dfbcNv7uIljQkRERMTtO9tg6OzeWqzXjbcfiGe9Pk/Fo9ubPncePvXah0kwNAcvxcmBXNAFAoTpQhuzj4OTy16b3kcikDk/svuXHpyIy0CflKXjdb/BwVDs+KYInuLXR2muUfzaZNtfPBAHL6p5y/18YCWOLsL9lEMXtrFx7vZU7dr91vQv6Vvap1Z/fEkdd4xVB0OJQOb8Q06NDwz4Hiocr/sF52HeW6nQyj+2dn8B3X5DdevU1ywLw/y6bf+Abj9ERERE3G1nGQzpUKgNg5oA6N5jp89jcX/CMMiVYOjm1cFAMlBJBw/a86N0e8bUHFLBkA5r2nHNPCvClZrxY4Kh8PGZ/R2d29cmJAqFY1H1eT8QJyep8587L5njlot5EwbJfolgKLR4LV3Qugtgd0zsa99UW8ia/iV9a/fvWls/1T/WlgqGdFjThjnmGtfc1VMzPhgMXcj37gvyPfyi+rfsZ8iQczDGupr+94kJiUy46vbret3HhIiIiIjbc4bBkAp9bolHF862J3fF2tmmg6NOUDSdo4OhXCAxtn0PzAdDBY45j5cn4iDxiFU8GFJBijfOBiVFj2vVjR8cDGWOz7UbVOVU82/Oee785+aQaN8EQ2qBK/t8rt9HGVq8lixo/T7u69jXviX7cfXrhgz1jemPtdb0dQ2Ns4b6u4bGxIOhwDW1QU3kOnetG98PhtT45n2rx5X9DIkdZ2z7GN2a9hzHdMe5dsOzsLHxqbqIiIiIuJvOLxjSIdBdcdZu2zwydv/J5rX5enpHB0NSvZhOLHrHtsc1d1ocnasFuqrh17Htzhi1gLcLf/X10Xmzf9XP9N/UCNXf1NOBSS8MMH1L7jox4zd1N26OodsnsWhLBBP2+LSB0CMXTEWDod4+7fnzznnMyvH6OAYEQ7njc9X7KA6GHBPn32iOLf6+CLTrhbqcT9Duvuz2dqyz3d/m6/dxX8e+9lVtMWP9Q1+HtsVquJb0sfp9c699U+2xtmgw1Atj5PtAP9IlvwcSjwy2Vo4P3jFkLQyG/GNMnY+xqtqp+qX7zgVD13lMiIiIiLh95xkM2cfILh6IOzoQcsOg5o6iJ6bNfMaQd4fRCKcIhpQ2wIgFAmPbw9ogYROkdBf2pr1TUy3gbbtezJvF+Gb/7gLd1t/UMP3s4smEQNH6heqauTG54CHS7ocpoeBDbUsFWXp+sWDI1tJ3vGzOX9F1rBzvH0upuePbWB7q9cxdH2n0PDaG2+X5+IB8f6u7Pz4nz1Fg4W4Xse6/Md1x/hh/W+pr31hbyfZQn1y7b0kfq+qbMzTOGurvGhqTDIZsYKGvr3zvX6hrrv71+oasHD8mGIodW2z7WG3dVP2yfcvva9kv9CjZdR8TIiIiIl6Psw2Gzh7ecgIfJxhqwiL3A6mf6b7uXUbDnSoY0jaL++jCemx7z0CI4IYNRcGQWQhtwhkzxswhMF6HB14Q1S7m3bHumLTbC4a6c9Xqc+xuy885Fwydq/a2ZuicRawcPywYKr0mpl8u3Imauz7S3HUOt6tFbVPXDQEa3QVsaDGbWuD6bep1aFvoa99YW8n2UJ9cu29JH6vfN/c6ZM3+lLlg6Fy1t49/yfdiZTBUOn5OwZA1VT+/b3MuYsd1U8eEiIiIiNt1po+SdYMf+2HTnTuGOncIue3j3EYwFF0gj23vaRbz1x8MOdv0nJv5ul9XuLVgqD2fvhMGQ6peZ+7e+UlZOX6bwZCu7YdoNeauj7Q2GNKLeLlADVl690NoW0q/v/s6Viu1j5Ix6uuQob4xS/pY3X3EDI2zhvq7hsakHyWT4zqBnwoD5fdAaTBUMX5oMBQ7Lrs91u6q51nQzzc1JlfPfA/ZwKxrbKzdPmSuiIiIiLgbzi8Yah8f87fZO4JCIVAoLBrmZMFQs8iPBgJj24Nmgp9cu96nWQgVB0M6bAkHK6pGLoAImQsMtM5ci9t7cw3pHm+ovZlfKJBpgqf++UkHJK2V47cVDOnjGxMKKXPXRxo9j43BdufxsfgHGBtDC9maxW2ub6w9NW7IGN+SvjX1fEvHqn62rz/GbQsZvXbt41/+tsLvocrx+xQM6XMeCYWUsbF2+5C5IiIiIuJuOL9gSJr7c/X60THnjqJu/0b7yFnlI2ZTBEO5uy3GtscNBDdu8NO0t4vtJogYEwwFwwm9zyNxdBA5BrvfWHCg55E5/lzwEGz3jj/i5tgT7ZEa+nzEzneruQsoNP+y8U7fYFu8vjJ1fLot+95L19fmrk/nfVXRrhbrzd0g2wyGSvoNqR9rL52XcujcQqp+pYbGu9b0TV07Hda0d/zI94F69KnX19wFFApuysY7fSuDodjx+dtLzkNJH9/UmFjb2FAo9hoRERER5+EsgyH3L5FpA3+aXodBtt0PhZQ3FQwNCiwcswvqlGYxHQ+GpG0oo5T7cdudfaeCITO2MRVMRAKNbDAkNeGY1QYVgf1XtUf6+CFJM7/OeXRMBUO9+sF+mz79fZSMN8aDoVR9afT4bODTt9s3Vt+be2sgaNJzCGzPtTvBkFrUhx4hs6pFbImhcf62kH6/knGxPqX7VI7ZT4m1Y1V/f0xom2s61JPvI/05OI3Bfps+/UfESsYb+8GQN7ZVvhebUEW93vSPb0ttV6baUtbXtCFaX3vu1Nf+uNC21HZERERE3F1nGgzdnKODoUVrFv7BsKGjCRjy/XbX7p07XdPBUJlld+akjQdD+fqp4ytx3PzN+6j6bqFKhyxgS8aoPlZ3m9vH1+/vmxuvtDXcvu62Uqcea7eFjPXL3e1VYu4umBKTdwwVWnIOSraVGqtn9duGmKsz1X4QERER8XokGKqUYChlWTA0NnTYDc2xhoKX8cFQU3vkOcreMZSsHz++vOPmr89fYmyuHefv+GBIvgfVnT2dD5mud4pgCBERERFx1yUYqpRgKKUJBGLBkA4q1KNDi1nUqzuf+nfFmLtlmmOtfexPP64nxw0OlrzHvfw6VfXDx5d0kvmnzlmuHZegudtHvo+0lddbf/aPHDc40JHvsXbfY+ogIiIiIs5DgqFKCYYQERERERERcSkSDFVKMISIiIiIiIiIS5FgqFKCIURERERERERcigRDlbrBEAAAAAAAAADAnCEYqpRgCAAAAAAAAACWAsFQpQRDAAAAAAAAALAUCIYqJRgCAAAAAAAAgKVAMFQpwRAAAAAAAAAALAWCoUoJhgAAAAAAAABgKRAMVbpfwdCFOF4ditOr5mXD1emhWK1WjceyV5dc+82ijsnOTXq8W7MDAAAAAAAAuE5mGwyd3VuL9brx9gPxzLZdPBB37HbP+0+6NYa4P8HQlTg9XIlDPxWS6OAnEajk2i+OnWDm8FTuaVpK6+t+BEMAAAAAAACwx8wyGNKhUBsGPRWPbsvX9x73+rXqsOiWeHQRaKt0X4IhHe5EQpUxwZAOY9q6JnyaMpypqU8wBAAAAAAAAPvODIOhx+K+H/I8uSvWieBHB0mp4KjCvQiGrk7FYeARMsvwYCjwaNrFsVgl9lVHXX2CIQAAAAAAANh35hcM6RDorjhrtzV3DMUeFWseLZviMTLlFMGQDiTso07eZ/C0oYoONEwf93GuXLsiVl+P7X3mj/nMnd4+Eo9gxYMfQ7Rdz9ndf3NHj9z/JPlMZX2CIQAAAAAAANh35hkM2cfI2tDHhEOh8OfZw1vdzyAa6dhgSIUmbhahwwknhDHhjbPNu3unpD1e34RAnSxEhSleCKTGhD5byBINfhqi7e6+9LzVXEx4kyhXTmV9giEAAAAAAADYd2YbDJ2pwKd9fCwWDKnHzqa7W0g5Nhjq4QUzJvhx73rphjm59h5e/W4YYkKTbggU2tZlbDB0oY/BhlnTB0Ol9QmGAAAAAAAAYN+Z6aNk7odPK8MB0NR3CylHB0PNnSzmMa9GPxgaErpYMvVNexMsuV+3bDkY8ueTC7ZqqKxPMAQAAAAAAAD7zvyCodBnBult7ucOKU1YdOfhU2fbeMcFQyak6IQu3h0944KhfH03+FG1+gHQFoOh9vGu5rUiGE4NpLI+wRAAAAAAAADsO/MLhqRFf66+9yHVnk3AlOwTcNpgyLzeXjDUr6/RYdGxOD4M/7UuvQ9/jMOYOeowpq1tQqh+32beAwKjsvqGeDA0fP8AAAAAAAAAc2KWwZD7l8i0vT9FX3C30I0EQ01ookMH5aE4PZ3yjqF8fUMTfMTqhO68cRg3xyassXMM9tv0SewmQkl9QzwYGrN/AAAAAAAAgPkw02Do5hwbDO0GJhhKhR7dO2+6jA2vSjABV/iOpqmIB0PXs38AAAAAAACAm4ZgqNIlBEOp0GdD/DGs7QdDzb6zcxxH9o6hLe8fAAAAAAAA4KYhGKp0zsGQDkLU41XFgYe6s6h/14y5m6apFfgcnlx7EvuXxUYFSyns5wc1+vvZ+v4BAAAAAAAAdgeCoUrnHAwBAAAAAAAAALgQDFVKMAQAAAAAAAAAS4FgqFKCIQAAAAAAAABYCgRDlbrB0PPnzxERERERERERZyvBUKUEQ4iIiIiIiIi4FAmGKiUYQkRERERERMSlSDBUKcEQIiIiIiIiIi5FgqFKCYYQERERERERcSkSDFVKMJT38uRArFarxiNxHuhzc56Lo3Zu0qPzAe27dkyIiIiIiIiIw5xtMHR2by3W68bbD8SzTvtjcd+2aW+JRxdu+3AJhvLqYKgXqGw8P3KCmYMTcRnoM8bS+rpfbp6BdhN8EQ4hIiIiIiLi/J1lMKRDoTYMeioe3Zav7z1u2s3rOw+ftv2fPbwVCI+GSTCUNxUM6bClDWsuxclBOpyptab+0GBoG/NGREREREREvAlnGAypu4G8O4Ce3HXuCjJ3C91/4rffFWf29QgJhvLGgyH1GNaBOLl0tp0fiZW/bbB19YcHQ9LLE3Ew2bwRERERERERb8b5BUO9kKe5Y8gJg/QdQl5Q5N5BNEaCobzRYEiHNO4jWM2dN6uVODp3+g21sv6oYKipfXByGWhDREREREREnIfzDIbsY2EXD8QdHQiZcKh/l1A3MJpCgqG8yWDIPual77hRgY0JWCYLhirqjwuG0o/MISIiIiIiIs7B2QZDZ527grrBUOeOoSYg4o6h6zMXDJ2r9vYxrOmDodL6kwRD7ecZISIiIiIiIs7PmT5K5n74tNL9XKHYZwx5n0s0UIKhvOlHyVZemGL+PPxkwVBFfYIhRERERERE3HfnFwy1j4/525rPHdJfeyFQaNtACYbyRoOh9vEuf9tEf/q9sv4kwVCiHREREREREXHXnV8wJE3/uXpzx9DmddPf/6tkTcBU+9fKCIbypgITHba0d9mYx7z6fc1dPt0Pki6zrL7TNxHspNtNbT58GhEREREREefsLIMh9y+RaZ0QyNiEQ62B8IdgaGum76Rpwhod/MSCl02f+kfMSuobRwVD+k4k/lw9IiIiIiIiztuZBkM3J8FQ3ikesdI1thy8DA+GuFsIERERERERlyHBUKUEQ3nHB0PNXT9b/mDnocGQPj4+dBoREREREREXIMFQpQRDec3dPqvGys8Jsn9ZbFSwlNJ+flFjbz8l7RN9WDYiIiIiIiLiDUswVCnBECIiIiIiIiIuRYKhSgmGEBEREREREXEpEgxVSjCEiIiIiIiIiEuRYKhSNxgCAAAAAAAAAJgzBEOVEgwBAAAAAAAAwFIgGKqUYAgAAAAAAAAAlgLBUKUEQwAAAAAAAACwFAiGKiUYAgAAAAAAAIClQDBUKcEQAAAAAAAAACwFgqFKCYZgw4U4Xh2K06vmZcPV6aFYrVaNx7LXdaLmZPctPR6z9/DxbRe1z9Q5y7UDAAAAAABADbMNhs7urcV63Xj7gXjWaX8qHt122u89dtrGSTA0B67E6WE4lJkutDH7OAykJnofiUDm4tjuX3p4KivVUTpe9xscDIWPr3v+htaPXx+F2Uf82uTaAQAAAAAAoJxZBkM6FGrDoCYEasMf8/rOw6eR1+MkGLp5dDCQDFTSwYPm4nhUuJCag26LBCY6rGnHNfOsCFdqxo8JhvLnWGHuTqrahT7vh+L0NHX+c+el/rwBAAAAAABAmBkGQ4/F/fUt8ejC2fbkrljbbRcPxJ31XXHmjtHt3raBjg6GcoHE2PY9oCy0yDDmPF6disPEI1bxYCjwaJYNSooOpm784GAoc3wbTEATumsqjPMYWO785+ZQPEcAAAAAAABIMb9gqBfybB4bu/8k1C7VYZEXJg10dDAk0Qv2xKJ2bHscs5A/vjB3epjHgdw6tr15qVALeBvCqK9lo9m/6tfcudHWCNXf1NOBSS8MMH1LwgUzflN34+YYun0SwUMimLDHpw0EULlgKhoM9fZpz593zmNUjtfHUVS4S+74WsaEM4nzbzDHFn9f5NoBAAAAAACghHkGQ/YxMh34qEDIhEM6GNJ3FPUfJWvvKHJrDXCKYEhhA4zYun1sexgbJGwW8zo8aEMA096pqRbwbjAk96kW45v9uwt0W39Tw/SzAYAJgaL1C9E1c2NywUOk3Q9TuufHoLalAgk9v9CFcY9Vhyqb8xfq3qNy/NBgKHd8uq7ct30vDCJ3fSTR89iQawcAAAAAAIA8sw2Gzh7ecsIeNxiSNoGR+fBp2efJbt0x1NIs7qOL67HtPTLBT67dWcxvwhkzxswhFFKoMMgLotoO7thythcMdeeq0efY3Zafcy4YulDtbc3QOYtQOX5YMFRzTUzfQeFM7vpIcte56H0AAAAAAAAASWb6KNna+0tk5i6hNhjyDT1eNtBtBEPRBfLY9h6BEKEJG8ziOtPuLObrgiFnm55zM1/36wq2Fgy159N3wmBI1evMPXAXVYzK8dsPhiS58xyjYBzBEAAAAAAAwPaZXzDUPj7mb4sHP/qvmE30J+snC4aaRX503T62PUgm+Mm1632axXxxMKTDlnCwomoUBxAORYGAM9cgofbeXEO4xxtGzy90YZrgqX9+CoOVyvHXFgwNCWdy10cSPY8NuXYAAAAAAADIM79gSJr+c/WBvqHQqH3crO5OoimCIfMZLfEAYmx7nEBw01nYm/Z2sd0EEWOCoWA4ofd5LI4PI8dg9xsLDvQ8MsefCx6C7d7xR8gFU6nAQp+P2PluMXcBheZfNt4QPPeaeH1F7vg2mDr9ECldX5O7Ps2xxQOqXDsAAAAAAACUMMtgyP1LZFovFDJhULit9aaCoUGBhUN2QZ3CLKY7WYGq54YAbSjTLOzddmffqWDIjG1MBRORQGMzh/hxmnDMakOiwP6r2hWBPn5I0swvPv14MNSrH+y36dNvLhlviAdDqfqS6PH1z01497H6/fHGQMin55AI/3LtAAAAAAAAUMRMg6Gbc3QwtGjMwj8cFriYYCjfb3fp3rnTJR0MlaFrjAw+4sFQvn7q+EoYN3/zPuJuIQAAAAAAgO1DMFQpwVCKsmBobOiwGzR3vwQOdnww1NQeeY6ydwwl68ePL8+4+evzlxibawcAAAAAAIByCIYqJRhKYQKBWJaggwr16NBiFvXqzqf+XTHmbpnmWGsf+9OP68lxg4Ml+/k+jX6dqvrh40syyfxT5yzXDgAAAAAAADUQDFVKMAQAAAAAAAAAS4FgqFKCIQAAAAAAAABYCgRDlRIMAQAAAAAAAMBSIBiq1A2Gnj9/joiIiIiIiIg4WwmGKiUYQkRERERERMSlSDBUKcEQIiIiIiIiIi5FgqFKCYYQERERERERcSkSDFVKMISIiIiIiIiIS5FgqNL9CobOxdHqQJxcdrdfnhyI1WrVeCTOnbaS9ptVHZOdm/ToPNAHERERERERcT+ccTD0VDy6vRbr9V1xFmg/u6faGm8/EM8CfYa4P8HQpTg5WImDk8temw5+EoFKrv38yAlmDk7EZaDPGEvr634EQ4iIiIiIiLjHzjMYenJXrNe3xKOH6t9+MKRDoTYMagKke487fYa6L8GQDnciocqYYEiHMW1dEz5NGc7U1CcYQkRERERExH13hsHQY3HfhkE6IPKDIdV+Szy6cLbZIMndNtC9CIYuT8RB4BEy6/BgKPBo2vmRWCX2VWddfYIhRERERERE3Hfn/RlDoWCot80+crYW9584/QY6RTCkAwn7qJP3GTxtqKIDDdPHfZwr166M1ddje5/5Yz5zp7ePxCNY8eAn067n7O6/uaNH7v/o3Ok31Mr6BEOIiIiIiIi47y4zGLKPkV08EHd0IGTCoV0IhlRo4oYUOpxwQhgT3jjbvLt3Strj9U0I1AlJVJjihUBqTOizhazR4Kcx2u7uS89bzcWEN5MFQxX1CYYQERERERFx311sMHT28JZss4+P7U4w1NMLZkzw49710g1zcu09vfrdMMSEJt0QKLSt69hg6Fwfgw2zpg+GSusTDCEiIiIiIuK+u9BHyfy/RKY+d2hHgqHmThbzmFejHwwNCV2smfqmvQmW3K9btxwM+fPJBVs1VtYnGEJERERERMR9d3nBUPv4mL/N6zfQccGQCSk6oYt3R8+4YChf3w1+VK1+ALTFYKh9vMvf5odTA62sTzCEiIiIiIiI++7ygiFp0Z+rbwKk0PiU0wZD5vX2gqF+fa0Oi47E0UH4r3XpffhjHMfMUYcxbW0TQvX7NvMeEBiV1Xf6BtuG7x8RERERERFxTs4wGNr8lbGu7p+j9/r4oZDyRoKhJjTRoYPyQJycTHnHUL6+sQk+YnVCd944jptjE9bYOQb7bfrUP2JWUt8YD4bG7B8RERERERFxPs77jqEbcGwwtBuaYCgVenTvvOk6Nrwq0QRc4TuapjIeDF3P/hERERERERFvWoKhSpcQDKVCn43xx7C2Hww1+87OcZzZO4a2vH9ERERERETEm5ZgqNI5B0M6CFGPVxUHHurOov5dM+ZumqZW4HN4cu1J7V8WGxUspbSfH9To72fr+0dERERERETcHQmGKp1zMISIiIiIiIiI6EowVCnBECIiIiIiIiIuRYKhSgmGEBEREREREXEpEgxV6gZDAAAAAAAAAABzhmCoUoIhAAAAAAAAAFgKBEOVEgwBAAAAAAAAwFIgGKqUYAgAAAAAAAAAlgLBUKUEQwAAAAAAAACwFAiGKiUYAgAAAAAAAIClQDBUKcFQnqvTQ7FarRqPxUWzfTe4EMft3KTHuzU7AAAAAAAAgOtkxsHQU/Ho9lqs13fF2aD2YRIM5dHBUCJwuTh2gpnDU3HVbJ+K0vq6H8EQAAAAAAAA7DHzDIae3BXr9S3x6KH6NxD85NpHSDCUJxUM6TCmDWuuxOnhtOFMTX2CIQAAAAAAANh3ZhgMPRb3bdijAyA/+Mm1j5NgKE88GFKPcR2KU/cWnotjsfK3DaauPsEQAAAAAAAA7Dvz/oyhXPBDMHQjRIMhHdK4nznU3NGzWolJ8pnK+gRDAAAAAAAAsO8QDFVKMJQnGQzZx7yuTsWhDmxMeDNZMFRRn2AIAAAAAAAA9h2CoUoJhvLkgqEL1d4+3jV9MFRan2AIAAAAAAAA9h2CoUoJhvKkHyVbOR8OrTB/Pn6yYKiiPsEQAAAAAAAA7DsEQ5USDOWJBkPt413Na4Xe5n4u0Agq6xMMAQAAAAAAwL6zv8HQxQNxZ72uDo4IhvJEgyGJDmPaO3qaD4fu9TV3+XQ/SLqMsvqGeDA0fP8AAAAAAAAAc2KGwdBT8ei2CnR8b4lHFyXtjQRDWyMVDLVhjQ5eYsHMpk+0TJSS+oZ4MDRm/wAAAAAAAADzYd53DN2ABEN50sFQGbpG+wHS2yH1KNl17B8AAAAAAADgpiEYqpRgKM/4YKi5Y6fzIdLTk71jaMv7BwAAAAAAALhpCIYqJRjKY+62MY9iVX9Oj/3LYlt7hst+flCjv5+t7x8AAAAAAABgdyAYqpRgCAAAAAAAAACWAsFQpQRDAAAAAAAAALAUCIYqJRgCAAAAAAAAgKVAMFSpGww9f/4cEREREREREXG2EgxVSjCEiIiIiIiIiEuRYKhSgiFEREREREREXIoEQ5USDCEiIiIiIiLiUiQYqpRgCBERERERERGXIsFQpQRDeS9PDsRqtWo8EueBPjfnuThq5yY9Oh/QvmvHhIiIiIiIiDjMGQdDT8Wj22uxXt8VZ722x+L+WrU13nvstQ+XYCivDoZ6gcrG8yMneDk4EZeBPmMsra/75eYZaDfBF+EQIiIiIiIizt95BkNP7or1+pZ49FD96wdDJjC6/8S+NiHRnYdPnT7DJRjKmwqGdNjShjWX4uQgHc7UWlN/aDC0jXkjIiIiIiIi3oQzDIZU0NOEQTogCt0x1PXs3lqsbz8QzwJttRIM5Y0HQ+oxrANxculsOz8SK3/bYOvqDw+GpJcn4mCyeSMiIiIiIiLejPP+jCGCoZ00GgzpkMZ9BKu582a1EkfnTr+hVtYfFQw1tQ9OLgNtiIiIiIiIiPNwD4IhHiW7bpPBkH3MS99xowIbE7BMFgxV1B8XDKUfmUNEREREREScgwsPhlIfUD1MgqG8uWDoXLW3j2FNHwyV1p8kGGo/zwgRERERERFxfi46GNKPkKkPqb4Itw+RYChv+lGylRemmD8PP1kwVFGfYAgRERERERH33cUGQ88e3po8FFISDOWNBkPt413+ton+9Htl/UmCoUQ7IiIiIiIi4q67yGCoKBS6eCDurOsfMyMYypsKTHTY0t5lYx7z6vc1d/l0P0i6zLL6Tt9EsJNuN7X58GlEREREREScszMMhuznBvnaIMh82HS/fS3uP3HqEAxtzfSdNE1Yo4OfWPCy6VP/iFlJfeOoYEjficSfq0dERERERMR5O+87hm5AgqG8UzxipWtsOXgZHgxxtxAiIiIiIiIuQ4KhSgmG8o4Phpq7frb8wc5DgyF9fHzoNCIiIiIiIi5AgqFKCYbymrt9Vo2VnxNk/7LYqGAppf38osbefkraJ/qwbERERERERMQblmCoUoIhRERERERERFyKBEOVEgwhIiIiIiIi4lIkGKqUYAgRERERERERlyLBUKVuMAQAAAAAAAAAMGcIhiolGAIAAAAAAACApUAwVCnBEAAAAAAAAAAsBYKhSgmGAAAAAAAAAGApEAxVSjAEsCxWL0z+Y1CTqztmv2PnPMV43xiptn3iOs/Dde2LawsAAACwDCb/rS4UpixJgiGAZVGzuFV9Q4aIbXcp6eMzZIxPaQ3VL2QNofEhl0ToeK7rGP392PPrW0tozJA6AAAAALB7TP5bXShMWZIEQ7DhQhyvDsXpVfOy4er0UKxWcvGlPZa9rhM1J7tv6fGYvYePb7uofabOWa49jbswLjVEbLuL28etV6pLqD1ljpI+MWrGDt3P1Uvye6g5ltULN/A91O5b+uFhe/eP3X+9Dba9j5s4JgAAAADYPpP/VhcKU7bjU/Ho9lqs13fFmdf27OEtuV21Nd573GkfI8HQHLgSp4dyQRcIEKYLbcw+DgOpid5HIpC5OLb7lx6eykp1lI7X/QYHQ/HjS53fHN3zH56f6ROvnW1/6VAcvqTmLef5wZU4ftVsDzF0YRsb525P1a7db03/kr6lfWp1sa/9Pr4hdDCUCGQuPuzU+OCA76HC8bqfN49uaNVvt6g2l84Yzylw6wyrab5fUkGcX9fOPyQAAAAAzIfJf3sLhSmT++SuWK9viUcP1b/9YKjrY3F/vRb3n4Ta6iUYunl0MJAMVAqCi4vjdHuG1Bx0WySQ0WFNO66ZZ0V4UzN+TDAUPT593g7F6em482cwdzf1p5g7L5njlot5EwbJfolgKLR4LV3Qugtgd0zsa59UW4ia/iV9a/fvUls/1T/WlgqGdFjThjnmGtfc1VMzPhQMdTF3F6XCR8WQczCG6pqvyu/nF+T39Uvq37Lv6+s+JgAAAADYHpP/9hYKU6ZVBT1NGKQDolwwZO4suvPwaaCt3tHBUC6QGNu+B+SDoQLGnMerU3GYeMQqHgypIMQbZ4OWooOpGz84GIoen9p/c84meR+agCd4V1LmHKfaN8GQWrTHa4QWryULWr+P+zr2tU/Jflz8uiEt7tcx/LHWEKF+vilC/V1DxIOhwDW1oUbsvdKhbnw+GDLBkrlDLU7sOGPbx+DWtOc4pkGdk+Z7WZ+Lsu/rzfguse0AAAAAsLtM/htcKEzZmiXB0MUDcUfdXXQRaBvg6GBIohfsiUXv2PY4ZiF+fKEW+KqGX8e2Ny8VKgCwIYz6Wjaa/at+pv+mRqj+pp4OTHphgukbfmSpixm/qbtxcwzdPokFTiLYsMenDQRQuWAqGgz19mnPn3fOY1SO18dRVLhL7vg0ifNXTDL8MccWf18E2vWiVh5z0O5c7Xaf0DYfv4/7Ova1j2qLGcLdHuqTa/cp6WPx++Ze+6TaY23RYKgXXMj3gX78SX4PZO7a0VSOzwZD6j2cCaX8Y0ydj7Go2qn62X0XBkPXeUwAAAAAsH0m/20uFKZszUQwdHZv8xlDU90tpJwiGFLYACO2bh/bHsYGCZuFjA4P2hDAtHdqqgDADYbkPtVifLN/d4Fu629qmH52oWFCoGj9QnTNscFFpN0PU7rnx6C2pYIsPb/QhXGPVYcim/MX6t6jcvzQYCh3fJrc+U2g5yXnbt9LMaLnsSHcLs/HB5v3t1609+doF7HuvzF97Da3reRrn1hbyfZQn1y7T0kfi+qbM0Wov2uIZDBkHwPT11e+919V11z9q3ukqRwfC4b09mb+sbuFYscW2z4WWzdVP7vvTDB03ccEAAAAANfD5L/NhcKUrVnxKNlUH0A9VTCkaRb30cXx2PYegRDBDRty7U4YsAlnzBgzh8B42dt9/KkbVrhjy9leMNSdq0afY3dbfs65YOhCtbc1Q+csQuX4YcFQ4TXJnd8izL5ic8xd53C7vIZ2YeuGAA3uAja0mE0tcP029Tq0zVJTy1KyPdQn1+5T0sfi9829DlGzP0UuGLpQ7e2dOvJ9VBkMlY4vfZQs1Cd2zLXnopZU/ey+CYYAAAAA9pLJf5sLhSlbsygYkpb2K3AbwVB0gT22vYdZiHfW4U3YYBbPmXYnDKgLhpxtes7NfN2vK9haMNSeT98JgyFVrzP3wF1UMSrH734wJEnUqQ2G3Ls4fEN3dajtPqFtKfz+7utYrdQ+Ssaor0Na3K9jlPSxuPuImSLU3zVE+lEyOa4T+KkwUH4PlAZDFePzwZAkEKbEjstuj7W76HkW9PNJjcnWSwRDsbF2+5C5AgAAAMBuMPlvcqEwZWvWBEO3H4hnobZKJwuGmkV+dN0+tj1IJvjJtet9mkVDcTCkw5ZwsKJqZAOIALnAQOPMNUiovTfXEO7xhtHzC12YJnjqn5/EPF0qx88mGIpcy+h5bAi2q/PRLGzjH2BsCC1kaxa3ub6x9tS4IWN8SvrW1PMpHav62b7+GLctRPTa6esrvwfcEMe55lkqxxcHQ4k701xi5yNE7hzFSI3J1iMYAgAAANhLJv9NLhSmbM2iYMj8ufre5wzpD6VWn0FUdyfRFMGQ+YyVeAAxtj1OILjpLMxNe7vYVgumlXw9IhgKhhN6n8fi+DByDHa/seBBzyNz/M5cgwTbveOPkAumUoGGPh+x891i7gIKzb9svCF47jXx+orc8WmS5zddf4PpFw6h3PdViEi7s0jfZjBU0m9I/Vh76bwUQ+cWQvUrNUdN39S102FNG8TI90HwUS5zF1Ao5Cgbb8gHQ2Y/7h1psePzt5ech5I+Pqkx2XqRYCg2zt8+ZL4AAAAAcPNM/ltcKEyZ1uYzg5oPlt5o//JYv/3+E7+G9KaCoUGBhUOuPYlZTHeyAlXPDQHaUEYp9+O2O/tOBUNmbGMqmIgEGps5xI/ThGNWGxIF9l/Vrgj08UOSZn7x6ceDoV79YL9Nn35zyXhDPBhK1ZdEjy9wbrR+SBer3x8fnb6eQyL8i7U7wZBa1Kf+jLhaxJboE9oWwu9XMi7Wp3SfijH7KaF2rOrvjwltc0mHevJ9pMKcpka436ZP/xGxkvGGfjDkjQ3UV9t8QtsUse2KVFuK+pr9YzJuvr9C40LbFLHtAAAAALC7TP4bXChMWZKjg6FFIxcYcuEfXey3mGAo32936d650yUdDJWha6SCkQLiwVC+fur4Shg3f/M+qr5bqJIhC9iSMaqP1ZIb5/f3yY1X2BpuX3dbqZZQW05LaFuIWL/c3V4l6BqZPyWfI3/HUJ6Sc+CTG5MiVs86Bbk6U+0HAAAAAK6HyX97C4UpS5JgKEVZMDQ2dNgNzLGGgpfxwVBTe+Q5yt4xlKwfP7484+avz19ibK4d5s/4YEi+B9VdMN5n/9QyRTAEAAAAALDrEAxVSjCUwgQCsSxBBxXqEaLFLOrVnU/9OxLM3TLNsdY+9qcf15PjBgdLzWN6Vr9OVf3w8SWZZP6pc5ZrhyVg7vaR7yNt5fXWn5Mjxw0OdOR7rN33mDoAAAAAAPOAYKhSgiEAAAAAAAAAWAoEQ5USDAEAAAAAAADAUiAYqpRgCAAAAAAAAACWAsFQpW4w9Pz5c0RERERERETE2UowVCnBECIiIiIiIiIuRYKhSgmGEBEREREREXEpEgxVSjCEiIiIiIiIiEuRYKhSgiFEREREREREXIoEQ5XuVzB0Lo5WB+Lksrv98uRArFarxiNx7rSVtOM+q95T9r0hPTof0M57ChERERERcSpnHAw9FY9ur8V6fVecBduVts8t8egi1F7v/gRDl+LkYCUOTi57bTr46S3Yy9vPj5yF/8GJuAz0GSP10+5Kfd0v9z4JtJvgkXAIERERERFxCucZDD25a8Keh+rfeDD07OEtsb59S9whGKpWL74ji/oxwZBe7Ld1TfiUqlUr9dPuUn3dN7HvePv080ZERERERNxXZxgMPRb3bRikA6JYMKT6qUDI/hvqU+9eBEOXJ+Ig8AiZdXgwFHg07fxIrBL7qpP6aXer/vBgSJp5jyIiIiIiImKZ8/6MoUQwdHZvLdb3Hsuvdy8Y0gte+6iN90hMG6roBbXp4z7OlWtXxurrsb1HcNRiPrCP9q6PvvHgJ9Ou5+zuv7nzQ+7/6NzpN1Tqp92x+qOCoaZ26FFHRERERERELHeZwdDFA3Gn3b5bwZAKTdxFsl78OiGMCW+cbd6dESXt8fomBOos0tVi3guB1JjUgjsa/DRG29196XmruZgF/mTBBPXj7lj9ccFQ/n2IiIiIiIiIeRcYDJkPnL7z8GnzescfJXMX01IT/Lh3XXTDnFx7T69+d7FtFu3dECi0revYYOhcH4MNs6YPJqgfccfqTxIMyf3Z9zYiIiIiIiLWu7xgSG27/UA8a7ftWDDU3Emh7/qxOovbwaGLNVPftDfBkvt1q1nIby0Y8ueTC7ZqpH7aHatPMISIiIiIiHjzLi4Y0p8ttI7YCYyGOS4YMovkTuiiFtPO4nZcMJSv7wY/qlY/ANpiMNQ+XuRv88OpgVI/7Y7VnyQYSrQjIiIiIiJi3sV++PTGyB1D+nOIVGCUG9912mDIvN5eMNSvr9Vh0ZE4OrCP+3TV+0jciTFmjnqx39Y2IVS/bzPvAYEF9dPuRn2nb6RNmW43tVMBJiIiIiIiIuadYTBkPkOof0dQ7HGxXQqGmtBEL7qVB+LkZMo7hvL1jc3CP1YndOeH47g5NmGBnWOw36ZPbA5xqZ92F+obRwVD+j0aDjYRERERERGx3HnfMXQDjg2GdkMTDKUW/d07P7qODa9KNAHX9hb+1E+77frK4cGQCZ+4WwgREREREXG8BEOVLiEYSoU+G5s7PwILcx0abDUYavadneNQqZ922/WNQ4Mh/f7a8twQERERERH3RYKhSuccDOmFtnq8p3hRre4s6t81Yu4maWoFPocm157U/mWrUcFSQuqn3Xb99vOLGnv7KWmv/+wjREREREREDEswVOmcgyFERERERERERFeCoUoJhhARERERERFxKRIMVUowhIiIiIiIiIhLkWCoUjcYAgAAAAAAAACYMwRDlRIMAQAAAAAAAMBSIBiqlGAIAAAAAAAAAJYCwVClBEMAAAAAAAAAsBQIhiolGAIAAACApbN6YfJlgiZXd8x+x855ivG+MVJt+8R1nofr2hfXFubI5O/aUJiyJAmGAAAAAGDp1CxuVd+QIWLbXUr6+AwZ41NaQ/ULWUNofMglETqe6zpGfz/2/PrWEhozpA7ATTP5uzYUpixJgiHYcCGOV4fi9Kp52XB1eihWK/kfF+2x7HWdqDnZfUuPx+w9fHzbRe0zdc5y7QAAAFCLuzAuNURsu4vbx61XqkuoPWWOkj4xasYO3c/VS/J3zOZYVi/cwO+Y7b6lHx62d//Y/dfbYNv7uIljApiayd+1oTBlOz4Vj26vxXp9V5x5bc8e3pLbVdvGOw+fdvoMlWBoDlyJ00P5H6xAgDBdaGP2cRhITfQ+EoHMxbHdv/TwVFaqo3S87jc4GIod37jgqXv+w+NNn/i1ybVDnOne/xFkQVla6Mvqfu0j31by7aXblfJtvFtseX7yMui6/qm5kvux+wy1Xxd2fkND4djx5djq8TfX1K8pf0wWH+euXZ+b2j+kyV6foT9fZEHVP/vzNYEKFQ5fUm94+d/4D67E8atme4ihC9vYOHd7qnbtfmv6l/Qt7VOri33t9/ENoYOhRCBz8WGnxgcH/I5ZOF738+bRDa367RbV5tIZ4zkFbp36mmVhmF+37R9wMK8ey/H8/gvbY5rvOIdQmDK5T+6K9fqWePRQ/RsJhu497mybSoKhm0cvbpOBSjwYarmQP1xHLIxTc9Btkd/WdFjTjmvmWfGbXc34McFQ+PjM/jYlTUgUCsfKMOP7U8ydl/rztiTy7/8CRr7/o8hJyUvTWbiE3h7yELYWBunFu6w/5vxsc34KVV+dm+j5b87d5NenBHUN5fxOj4efg+zx5djG8TfvTb9mTTDUso35NZS8f0efX9gquesz+OdL8x7O/XxNoRbzJgyS/x1NBEOhxWvpgtZdALtjYl/7pNpC1PQv6Vu7f5fa+qn+sbZUMKTDmjbMMdc4FSL51IwPBUNdTKCSCh8VQ87BGOpq+t8n5phMuBpnW8ekznlu3wBjmPw7LhSmTOtjcd+GQTogmlkwlFuQjW3fA258YSx/cz9MPGIVD4ZUEOKN0/MofVyrbvzgYChzfC7doKoWE/AEg6XcHArnqOY3PLjaTeYQDOlT7n7tMWgxXkjJwjrHNudXhLwwN7XwV+dPL1rVHEaex8Fs4/jlgSwlGIJ5M/jnS/Me1mPdry0FP9c3wZBa4Mb/GxpavJYsaP0+7uvY1z4l+3Hx64a0uF/H8MdaQ4T6+aYI9XcNEQ+GAtdU32FS9vtc7fh8MGRClaEhSmz7GNya9hzHjNENz8LExqfqKpLBj/q9t/haXhPcwbQ4Jv+uC4UpW3OOwZBEL6YTi9qx7XHMQvz4QgUMqoZfx7Y3LxXqFw27CFVfy0azf9XP9N/UCNXf1NML2t4vLaZvyeLdjN/U3bg5hm6fxA+rxC9Q9vi0gQV4bmGu20OBTG+f9vx55zxG5Xh9HEWFu+SOz0Xvo7Bvj2S4Y44t/r7ItTfvwcDcOte3c+7S719Ld3z/esS/v8qIzS/3/jft/ns68v014v0/BXIX0fMiD0Pue6M7R9Wmzocab9ttHb2gdra71l6D1PzkqevUbucnv5CntG1X87THEpuje2wdVC2v3Y71x6i5ysvUQZ+fgeGCPcdqsHw7d86DnoM8Pjs/pbvvkuOLnj+Xpn6wbSjN8fg1/WvdmV/sHAbmV3p9YvX9c+da9f5pjrPt5x1D0fkfgV+///Oz2+42p76/Lbn6Oarm5527Kd7/Cv895zPm+9f8/A78d0cv4GRb0O5/C+x2n9A2H7+P+zr2tY9qixnC3R7qk2v3Kelj8fvmXvuk2mNt0WCot0iXv5OoO35kndxdO5rK8dlgSH5D5IIM/xhT52Msqnaqfum+c8HQsGOSv6up+SXqxq67no8a27i5Vub6Hb/a1O61G7rj+9e/O75/Pc34+t91YTeZ/DswFKZszVQw5H7G0O0H4pnXZ6hTBEMKu8iL/VIztj2MWbi6vzToXyLaxZ9p79SUvyW17epruU+1yNzs34wxC09bf1Oju1g1i9Ro/UJ0zdwYPdfuLzsdIu36fDgT7J4fg9oWDySa+YUujHus6j+YzvkLde9ROd4/llJyx7chEjpk0POS4+x7KUb0PDZE25tzE6qdfu/k3r/mtbvL7vvDjo99f+VJz88Q71Px/TXo/W/q22vnGroMPWQf2TWoHS4PTe6/eSGxC61Ou3y9Ob/ydWjxNmRRVTA/Vbt7/WW73VczXp6udt6qr5qz2tah6euU6hJpl5fDu77O/h1Uv0HnQA6Qb+F2v/7c7XG1tZv+vW+1yPyT588lMn4UzVz1/D077yfn/Vc7v+D1cfqV1C96/0b2b7d35uBQfP4Hkpt7bv+57++ic5MgNz53ffR4Ob92m/yf4vd/sy1kp59k8Pdvg/nvVujnsvxv1Aeb/z7JgzkM/D/9avHn/xvTx25z20q+9om1lWwP9cm1+5T0sai+OVOE+ruGSAZDNljQ11e+B15V11z9q3ukqRwfC4bcoCF290vs2GLbx2LrpuqX7duEJKHjGnxMzblO31ll9utfB/1eiIZJ5tqp/dtxur/zfa9euzX1tWvr2fHO77Sd9g2mbuH7DHaaku+CKkJhytaMBENd1aNn04VDUwVDGvXDQP7HO7o4HtveQ36Ty99iur+4ugvHTLv6ullMbhanZoyZQ2C8+mEmf8Npf6iohWbbwR1bTsni2Z1rkGB7d64afY7dbfk56/n1fyMz+5TzvtC/tNmaoXMWoXK8v8gvo/SamH7Jc5ylqRGZY+46h9r1tuAvxAbT7l3jltC5DLwnXJprYpoD4zvtedLzM6TOS/H31+D3/zSohU+vpnwtp9t7P6m+9pDkoXvnV/5HzFtAySn3ttUSnF8Id//q62b+7hzUnOXl6uL0DRJpl5dNXt/mhSRYewR63k59/1zq19683OvTEpl/D9XPqd9SOr4GuZPY+8te6951b8b03guR+fnnz79eJfX9cx4ksn9/f1lUndy+KrDvj975iuHtP/f9XV3fIzc+d33seHeKQ97/vf1sAznZ/u+HanHZ/Nx3Q4AGdwEbWsymFrh+m3od2mapqWUp2R7qk2v3Kelj8fvmXoeo2Z8iFwxd6EW6/e+2/D2gMhgqHR8LhjaYsaE+sWOuPRe1pOrn990cTyBQVQw5puJAJfD9qjDjY7+jha6d+hmQ+J2us5/A+Mg8NOpnjjyW3KODsNtM/h0YClO2ZlEwJC3tV+A2gqHo4npsew/5TS5/y+n+4iW/yUsXturrZl+bxakZY375CIxXP4TkHNttes7NfN2vK0gtjFucuQYJtbfn09f9Ieoebxg9v95vihK9T1mvM3fv/KSoHL/NYEjX7pyXgSSuU+4699vN3NU5Sh22HqfOY+9clr5/m7G9GoHx6vgSxxAiPj9D8ryUfn8Nev+bc9FvT5/vEMGFkawhS/XmKw+3re9+rVFjnIWjQh5Gb5uL2rfajzU09+jCTW6Tl7gzvt2Xmot8rcq5c1Bzlperi9M3SKy92b/e7n49Eb25evPQx1USPHjjWlLnzyU2fgyR89Ve69DcGkvfq/4+Ou+jwvq5968msv/e94dPaA65fVWi5x+rndl/8fd3YKwl9/0dHR+aW6O9PqPf/w3Rny9TIifr/n7o3sXhW3r3Q2hbCr+/+zpWK7WPkjHq65AW9+sYJX0s7j5ipgj1dw2RDIbUuM7CXf53W24rDoYqxueDIYmu2f1dI3Zcdnus3UXPs6CfT2pMrp75Hgr/3hsba7eH2+XvjDpoyl0f0y/Wx4ZL2s61C43zrqf6OWHH9moExhcEQ7HgDOZB+rtgAKEwZWsWBj7m0bIdC4aaRX70l7ix7UFyC9dMu96n+YbfLE7NmGgwpH85CQcrqkYugAiRXBhbnLkGCbX35hrCPd4wen6hC9P8otY/P4U/RCvHbysY0seXPU+FdN5/XaLnsSF3nvPvLXOsmxq5968JRjp1O/MPjE8cXx5/fob0+39z/VS/6DkY/P6fhuDCSE5Gnt7ee1n1tadAHpJ3fuWY0MIxsGCsIbZwU9vlqd/g7l993czfnYOac2eMwukbJNFu66l99OqOQU5WvnX0fn3tOdfHNWJhnDx/LpHxo2iOLzQnfa2b9qL3f2J+7XtU9XGPrbB+0fs3sv/ge82h+PxPhJqP+37J7b89d5bM/Pz6tXTGy53krs/Y97+lfc9tC/3z3ftvkUIegH18LBouNKgFok9oW4xc31h7atyQMT4lfWvq+ZSOVf1sX3+M2xYieu309ZXX3V3IO9c8S+X44mDICxJixxY7HyFy5yhGakyqLX1nTnys3Z6ca3Peo3faFF9D+fufCpraa2Je96+n8zutv9/O9QqMjwVDOgD0+sIsSbxThxEKU7ZmSTB08UDcWa/FnYdPg9trA6MpgqHc3RZj2+OYRWP3Fy/5zSx/U2t/CMj2diGqfoDIXy7admcxuVmcmjFmAdqvHwwn9D6PxfFh5Bjsfpt99dDzyBy/M9cgwXbv+COkF+ZNe6SGPh+x891iAojQ/MvGG4LnXhOvr0gdn27LvvfS9TcEgpYW930VItfezCFxnRTdc2Rquqes2+7P199Hf7wskJ1DiuA1zL3/9T4T31+KEe//KZCHFZyb2i6n1SKnKY9Fzcwg337e+e22a9S2SP1SUvOTl7NFz9fuv9mvmp78EdZuV3N2x2icvkFS7apNnQdp7Bg78yrEnbOLvgbNNdF9RiyMk+fPJXX8Ej0u0R5E7kS+vYNzsudRXasxx6dRbbKGOm/+t1JR/aZ28v0b2b++Pomxped/0PkN4L53FLn9F31/O/j1a/HH567P2Pe/RR136vqOOf/6vxnypAXrO4u6bQZDJf2G1I+1l85LMXRuIVS/UnPU9E1dOx3WeAv7fl/5u4veV+B3zKLxhnwwZPbjBg+x4/O3l5yHkj4+qTGxtrGhkCU93+aaBEIXdZ5LH8/qXhNz/dywptvuXx9/Dv3xoWBI10w9ngazIvUuHUQoTJnWp+LRbeeDpVtviUcXps/ZvW7b/Sd+DelNBUPyN5HkgnlsexKz8Ov+4iXryd/U2u9n+ZuPCWWUcj9uu7PvVDBkxjYGF5nyh0+0TdLOIX6c5pcfq/2BFNh/Vbsi0Mc9P4pmfvHpy3MTa/TrB/tt+vSbS8YbgqGCJlVfEj2+5roF7PaN1ffm3mt30HNI/Icm196gzoEbHnXfN9LOte3Pzz9/Jhiz7XL/p+73jxnfGeJ/f2VIz29D+P1viX1/BY6vNz7Qp2L+pcjpR6+dapO7NXqLwtKFozztmxrS3PvEJzY/+bbr1lWv7f7VXOQ2NT3dr9mu5ixPoUZ97Y632n3l2i36HCUWqLrdzqsQdc7sPDv4x5XYb27+yfMnKT1+2y/68yOErCHf2vo4XPxr3ZvDgPnZ93Boeqn6ltj7t2T//jl26+fOv2XQ+ZX48/Zrl1z/1Pd3rn6OkvGp6zP2/W+J/XyxDD3/6gCTvx86i7rcYlMtYkv0CW0L4fcrGRfrU7pPxZj9lFA7VvX3x4S2uaRDPfnfcBXmNDXC/TZ9+nd4lIw3dEMGhTc2UF9t8wltU8S2K1JtKeprNmFJQHts6muf0DZFbLul/32p9h//XdeEMo6d0KZ/PfzraUIv2y7389LmZ4QdnwyG9J1CQ9eksIuk36EDCIUpS3J0MLRo5A8Rf2EcxCxcq3/p2SH0wjyyYE4HQ2WU3ZmTRs8xMo9c/dTxlTBu/uZ9NPxuoaGUvn93nfl/f0EatbDc5+trA4bJfwSAhvN7w8jv7UHB0ISohWItJWM2i9BN39w4v79PbrzC1nD7uttKtYTaclpC20LE+uXu9iohdxdMCf1gqJ6Sc+CTG5MiVs86Bbk6NfsZd60DwQ5Ahmm+CxxCYcqSJBhKUbawHhs67AbmWEPBy/hgqKk98hzFg6GS+vHjyzNu/vr8Jcbm2odj5j3q0u0Ay/j+ghj6rofAnQ77hPwRsPfnYJtwfm8Wzj+kGB8Myd911J0k3iNBtUwRDEEKc7fS8GDHXGeCIaiBYKhSgqEU6YW1XrCulrRoVXdm9P8fF3O3THOsqdu6Q+hbweW4wemEuVuk3b9fp6p++PiSTDL/1DnLtY9h3sHQ8r6/wEUHQvK/2Hu9YJTfm/ocJB7ngRFwfm8We/4JhSBB9/Gfyt+H9KM/ctzgQEf+Dtbue0wd2D4EQ1APwVClBEMAAAAAAAAAsBQIhiolGAIAAAAAAACApUAwVCnBEAAAAAAAAAAsBYKhSt1g6Pnz54iIiIiIiIiIs5VgqFKCIURERERERERcigRDlRIMISIiIiIiIuJSJBiqlGAIEREREREREZciwVClBEOIiIiIiIiIuBQJhirdr2DoXBytDsTJZXf75cmBWK1WjUfi3Gkracd9Vr2n7HtDenQe6IOIiIiIiIjX5YyDoafi0e21WK/virNku/HOw6eBPvXuTzB0KU4OVuLg5LLXpoOfxII+135+5AQDByfiMtBnjNRPuyv1dT+CIURERERExBt1nsHQk7tivb4lHj1U/4aCocfi/oRhkOu+BEM63Iks6scEQzoMaOua8GnKcID6aXepvu474b4RERERERGx3hkGQyr0acIgHRD1g6Gze2uxvve4s20q9yIYujwRB4FHyKzDg6HAo2nnR2KV2Fed1E+7W/UJhhAREREREW/eeX/GUDAYMo+Q3X/ibpvOKYIhvSC2j9p4n8HThip6QW36uI9z5dqVsfp6bO8zf9RiPrCP9q6PvvHgJ9Ou5+zuv7mjRO7/6NzpN1Tqp92x+gRDiIiIiIiIN+8CgyF1R9Et8ejJA3Gn+Xwh/djZhdtnuGODIRWauItkvTh2QhgT3jjbvLt3Strj9U0I1Fmkq8W8FwKpMaHPFrJGg5/GaLu7Lz1vNRcTHkwWTFA/7o7VJxhCRERERES8eZcXDF00gdDtB+JZs+3Zw1uBAGmYY4Ohnu5iWmqCH/eui26Yk2vv6dXvLsbNor0bAoW2dR0bDJ3rY7Bh1vTBBPUj7lh9giFERERERMSbd7l3DHXuEDIfRj3F42Wjg6HmTgp9149VLqY7wdCQ0MWaqW/am2DJ/brVLOS3Fgz588kFWzVSP+2O1ScYQkREREREvHkXGgz5IVAoLBrmuGDILJI7oYtaTDsL6XHBUL6+G/yoWv0AaIvBUPt4kb/ND6cGSv20O1afYAgREREREfHmXWAw1Dw65jxKpv9KmfNaax85q3zEbNpgyLzeXjDUr6/VYdGRODqwj/t01fvwxziOmaMOA9raJoTq923mPSCwoH7a3ajv9A22Dd8/IiIiIiIi1jnDYMj81THzodKu3TuCdBhk2/xQSHkjwVATmuhFr/JAnJxMecdQvr6xWXjH6oTu/HAcN8cmLLBzDPbb9InNIS710+5CfWM8GBqzf0RERERERKxx3ncM3YBjg6Hd0ARDqUV3986PrmPDqxJNwBW+o2kKqZ922/WV8WDoevaPiIiIiIiIBEPVLiEYSoU+G5u7NgILd71o32ow1Ow7O8ehUj/ttusbs3cMbXn/iIiIiIiISDBU7ZyDIb0QV4/3FC+41Z1F/bs2zN0cTa3A58Dk2pPav2w1KlhKSP20267ffn5Qo7+fre8fERERERERXQmGKp1zMISIiIiIiIiI6EowVCnBECIiIiIiIiIuRYKhSgmGEBEREREREXEpEgxV6gZDAAAAAAAAAABzhmCoUoIhAAAAAAAAAFgKBEOVEgwBAAAAAAAAwFIgGKqUYAgAAAAAAAAAlgLBUKUEQwAAAAAAAACwFAiGKiUYAgAAAAAAAIClQDBUKcFQnqvTQ7FarRqPxUWzHUDId8Nx+96QHvvvjpJ23lMAAAAAAABTMeNg6Kl4dHst1uu74szdfvFA3Fmr7X3vP3H6DZRgKI8OhnoL+g0Xx87C//BUXDXbp4L6aXalvu6Xe58E2k3wSDgEAAAAAAAwBfMMhp7cFev1LfHoofrXC4ZC6rBI9r8ItFVKMJQnFQzpxX4bFlyJ08N0OFAL9dPsUn3dN7HvePv08wYAAAAAANhXZhgMPRb3bRikA6J8MHR2by3W9x4H22olGMoTD4bUY0CH4tSkBoaLY7Hytw2G+ml2q/7wYEhydSoOJ5s3AAAAAADA/jLvzxgqCYaaR8umeIxMSTCUJxoM6ZDAfQSoufNjtRKT3PxB/TQ7Vn9UMNTUPiQZAgAAAAAAGMXig6FnD2+J9e0H4lmgbYgEQ3mSwZB9zEjf8aECA7PAnyyYoH6cHas/LhhSu4g/sggAAAAAAABlLDwYUo+dTXe3kJJgKE8uGLpQ7e1jQNMHE9SPsGP1JwmG5P70bgAAAAAAAGAQiw6Gpr5bSEkwlCf9KJlc7HcW8+pzaSYMJqgfZ8fqEwwBAAAAAADcPAsOhszdQncePg20DZdgKE80GGofL2peK/Q293NpRkD9NDtWf5JgKNEOAAAAAAAAeZYbDOUeM2s+lDr9KFpfgqE8qQW7Xuy3d3mYx4z6fc1dJt0PMi6D+ml2o75B9420KdLtpjYfPg0AAAAAADCOGQZDT8Wj2yrQ8b0lHl3YPgV3CxEMbY30nRxNWKCDh9jCf9MnkRtEoH6aXahvGBUM6TuR7OcYAQAAAAAAwFDmfcfQDUgwlGeKR3x0jS0u/KmfZtv1FcODIRM+cbcQAAAAAADAeAiGKiUYyqNDhVHBUHPXSftI0tRQP8226xuGBkP6/bXluQEAAAAAAOwLBEOVEgzlMXebyEW9tvJzauxfthoVLCWgfppt128/v6ixt5+S9vrPPgIAAAAAAIAwBEOVEgwBAAAAAAAAwFIgGKqUYAgAAAAAAAAAlgLBUKUEQwAAAAAAAACwFAiGEBERERERERH31MmDIQAAAAAAAAAAmAcEQwAAAAAAAAAAewrBEAAAAAAAAADAnkIwBAAAAAAAAACwpxAMAQAAAAAAAADsKQRDAAAAAAAAAAB7CsEQAAAAAAAAAMCeQjAEAAAAAAAAALCnEAwBAAAAAAAAAOwpBEMAAAAAAAAAAHuJEP8/q9XQP3imrIIAAAAASUVORK5CYIIA" alt="" width="803" height="312" />

那  tile(inX, (dataSetSize,1))的意思就是,让inX矩阵,在列重复1次。在行方向上重复dataSetSize次了。diffMat得到了目标与训练数值之间的差值。

 而 sum(axis=1) 为什么这样写呢,因为python和c不一样。 小编开始也不懂然后 在命令行输入help(sum) 出来很多有用的帮助。自己亲手敲了几行就懂了。

 axis=None, will sum all of the elements of the input array.  If
axis is negative it counts from the last to the first axis.
 
b = ([[ 0,  5,  6,  4, 66,  0,  5,  6,  4, 66],
       [ 0,  5,  6,  4, 66,  0,  5,  6,  4, 66]])
a = [0, 5, 6, 4, 66]
 
sum(b,axis=0)
Out[87]: array([  0,  10,  12,   8, 132,   0,  10,  12,   8, 132])
sum(b,axis=1)
Out[88]: array([162, 162])

 写到这想必大家也懂了。如果想搞机器学习,还需要了解很多python数学函数啊。

下面是get() 它是dictionary(字典)的一个函数。

机器学习实战  之 KNN算法

所以classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 的意思就是查找classcount字典中和voteIlabel相同的元素,默认返回0,因为是从0开始的,所以要加1
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True) key指定一个元素的迭代方法进行排序classCount。并且是倒序。
下面是变量表:最后输出结果是0
 机器学习实战  之 KNN算法
 '''
Created on Sep 16, 2010
kNN: k Nearest Neighbors Input: inX: vector to compare to existing dataset (1xN)
dataSet: size m data set of known vectors (NxM)
labels: data set labels (1xM vector)
k: number of neighbors to use for comparison (should be an odd number) Output: the most popular class label
@author: pbharrin
'''
from numpy import *
import operator #运算符模块
from os import listdir #inX:用于分类的输入向量。即将对其进行分类。
#dataSet:训练样本集
#labels:标签向量
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]#得到数组的行数,即有几个训练数据
diffMat = tile(inX, (dataSetSize,1)) - dataSet #tile:numpy中的函数。tile将原来的一个数组,扩充成了4个一样的数组。diffMat得到了目标与训练数值之间的差值。
sqDiffMat = diffMat**2#差值的平方
sqDistances = sqDiffMat.sum(axis=1)#对应列相乘,即距离和
distances = sqDistances**0.5 #开根号
sortedDistIndicies = distances.argsort()#升序排列
classCount={} #选择距离最小的k个点
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0] def createDataSet():
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group, labels def file2matrix(filename):
fr = open(filename)
numberOfLines = len(fr.readlines()) #get the number of lines in the file
returnMat = zeros((numberOfLines,3)) #prepare matrix to return
classLabelVector = [] #prepare labels return
fr = open(filename)
index = 0
for line in fr.readlines():
line = line.strip() #Python strip() 方法用于移除字符串头尾指定的字符(默认为空格)。
listFromLine = line.split('\t') #将line按'\t'进行分割
returnMat[index,:] = listFromLine[0:3]
classLabelVector.append(int(listFromLine[-1])) #倒数第一个元素
index += 1
return returnMat,classLabelVector
#归一化特征值
#使得所有参量在0到1之间
def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0] #返回矩阵第二维长度(列数)
normDataSet = dataSet - tile(minVals, (m,1))
normDataSet = normDataSet/tile(ranges, (m,1)) #element wise divide
return normDataSet, ranges, minVals def datingClassTest():
hoRatio = 0.50 #hold out 10%
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt') #load data setfrom file
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0] #m:目录中有多少文件#shape函数是numpy.core.fromnumeric中的函数,它的功能是查看矩阵或者数组的维数。
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
#inX:用于分类的输入向量。即将对其进行分类。normMat[i,:],
#dataSet:训练样本集.normMat[numTestVecs:m,:]
#labels:标签向量.datingLabels[numTestVecs:m]
#k:3
print ("the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i]))
if (classifierResult != datingLabels[i]): errorCount += 1.0
print ( "the total error rate is: %f" % (errorCount/float(numTestVecs)))
print (errorCount)
'''
我们将一个32x32二进制图像矩阵转换为1x1024的向量
'''
def img2vector(filename): #图片转化为向量
returnVect = zeros((1,1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0,32*i+j] = int(lineStr[j])
return returnVect
#安照先训练再测试的模式
def handwritingClassTest():
hwLabels = []
trainingFileList = listdir('trainingDigits') #load the training set listdir法用于返回指定的文件夹包含的文件或文件夹的名字的列表
m = len(trainingFileList) #获取文件长度
trainingMat = zeros((m,1024))
for i in range(m):
fileNameStr = trainingFileList[i] #从文件名解析分类数字
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
hwLabels.append(classNumStr)
trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr) #将文件名
testFileList = listdir('testDigits') #iterate through the test set
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 4)
print ("the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr))
if (classifierResult != classNumStr): errorCount += 1.0
print ("\nthe total number of errors is: %d" % errorCount)
print ("\nthe total error rate is: %f" % (errorCount/float(mTest)))
# main part
handwritingClassTest();

机器学习实战  之 KNN算法

机器学习实战  之 KNN算法

k临近算法手写识别,错误率为1.2%,改变k的值,修改函数handwriting - classTest 随机选取的训练样本,改变训练样本的个数,都会对k临近算法错误率产生影响。

  代码下载地址    http://www.ituring.com.cn/book/download/0019ab9d-0fda-4c17-941b-afe639fcccac

机器学习实战 之 KNN算法的更多相关文章

  1. 算法代码[置顶] 机器学习实战之KNN算法详解

    改章节笔者在深圳喝咖啡的时候突然想到的...之前就有想写几篇关于算法代码的文章,所以回家到以后就奋笔疾书的写出来发表了 前一段时间介绍了Kmeans聚类,而KNN这个算法刚好是聚类以后经常使用的匹配技 ...

  2. 机器学习实战之kNN算法

    机器学习实战这本书是基于python的,如果我们想要完成python开发,那么python的开发环境必不可少: (1)python3.52,64位,这是我用的python版本 (2)numpy 1.1 ...

  3. 《机器学习实战》KNN算法实现

    本系列都是参考<机器学习实战>这本书,只对学习过程一个记录,不做详细的描述! 注释:看了一段时间Ng的机器学习视频,感觉不能光看不练,现在一边练习再一边去学习理论! KNN很早就之前就看过 ...

  4. 吴裕雄--天生自然python机器学习实战:K-NN算法约会网站好友喜好预测以及手写数字预测分类实验

    实验设备与软件环境 硬件环境:内存ddr3 4G及以上的x86架构主机一部 系统环境:windows 软件环境:Anaconda2(64位),python3.5,jupyter 内核版本:window ...

  5. 《机器学习实战》kNN算法及约会网站代码详解

    使用kNN算法进行分类的原理是:从训练集中选出离待分类点最近的kkk个点,在这kkk个点中所占比重最大的分类即为该点所在的分类.通常kkk不超过202020 kNN算法步骤: 计算数据集中的点与待分类 ...

  6. 机器学习之路--KNN算法

    机器学习实战之kNN算法   机器学习实战这本书是基于python的,如果我们想要完成python开发,那么python的开发环境必不可少: (1)python3.52,64位,这是我用的python ...

  7. 机器学习实战1-1 KNN电影分类遇到的问题

    为什么电脑排版效果和手机排版效果不一样~ 目前只学习了python的基础语法,有些东西理解的不透彻,希望能一边看<机器学习实战>,一边加深对python的理解,所以写的内容很浅显,也许还会 ...

  8. 基于Python的机器学习实战:KNN

    1.KNN原理: 存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系.输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应 ...

  9. 机器学习实战笔记——KNN约会网站

    ''' 机器学习实战——KNN约会网站优化 ''' import operator import numpy as np from numpy import * from matplotlib.fon ...

随机推荐

  1. JavaScript中的正则表达式(终结篇)

    JavaScript中的正则表达式(终结篇) 在之前的几篇文章中,我们了解了正则表达式的基本语法,但那些语法不是针对于某一个特定语言的.这篇博文我们将通过下面几个部分来了解正则表达式在JavaScri ...

  2. getattr的作用是什么呢

    在python的官方文档中:getattr()的解释如下:getattr(object, name[, default]) Return the value of the named attribut ...

  3. Linux下Kafka单机安装配置方法&lpar;图文&rpar;

    Kafka是一个分布式的.可分区的.可复制的消息系统.它提供了普通消息系统的功能,但具有自己独特的设计.这个独特的设计是什么样的呢 介绍 Kafka是一个分布式的.可分区的.可复制的消息系统.它提供了 ...

  4. Hash表

    Hash表 Hash表也称散列表,也有直接译作哈希表,Hash表是一种特殊的数据结构,它同数组.链表以及二叉排序树等相比较有很明显的区别,它能够快速定位到想要查找的记录,而不是与表中存在的记录的关键字 ...

  5. Android手机令牌教程

    Android手机令牌教程 "沉下心,你不再是小孩子了.多看书,学做人"-JeffLi告诉自己 Written In The Font 花了一个天一夜,搞了这个小东西-安卓手机令牌 ...

  6. windows server 2012 安装 VC14&lpar;VC2015&rpar; 安装失败解决方案

    原文地址:https://www.cnblogs.com/huoniao/articles/6186021.html 系统环境如下:cmd命令行-输入 systeminfo 如下图 - The VC1 ...

  7. ECMAScript 6 入门之变量的解构赋值

    1.数组 1. var a=1,b=2,c=3; console.log("a:",a) console.log("b:",b) console.log(&qu ...

  8. OC图片滑动验证

    没事逛cocoaChina的时候有人问图片验证码怎么做,我看了下,网上有很多第三方的框架,但好多都是收费的,所以考虑自己能否做一个,该封装有点简陋,不过可以根据自己需要自行修改 该代码用到的技术,UI ...

  9. CSS-弹性布局-动画-过渡

    1.弹性布局 1.项目的属性 该组属性只能设置在某项目元素上,只控制一个项目,是不影响容器以及其他项目的效果. 1.order 作用:定义项目的排列顺序,值越小,越靠近起点,默认值是0 取值:整数数字 ...

  10. 转 Spring Boot之No session repository could be auto-configured&comma; check your configuration问题解决

    1.  环境介绍 JDK 1.8  Spring-Boot 1.5.1.RELEASE, STS IDE 2.  问题的提出 创建了一个非常简约的Spring Boot Web Application ...