Netty源码分析第8章(高性能工具类FastThreadLocal和Recycler)---->第3节: recycler的使用和创建

时间:2022-09-06 08:20:13

Netty源码分析第八章: 高性能工具类FastThreadLocal和Recycler

第三节: recycler的使用和创建

 

这一小节开始学习recycler相关的知识, recycler是netty实现的一个轻量级对象回收站, 在netty中, recycler的使用也是相当之频繁的

recycler作用是保证了对象的循环利用, 对象使用完可以通过recycler回收, 需要再次使用则从对象池中取出, 不用每次都创建新对象从而减少对系统资源的占用, 同时也减轻了gc的压力

这里看一个示例:

public class RecyclerDemo {
private static final Recycler<User> RECYCLER = new Recycler<User>() {
@Override
protected User newObject(Handle<User> handle) {
return new User(handle);
}
};
static class User{
private final Recycler.Handle<User> handle;
public User(Recycler.Handle<User> handle){
this.handle=handle;
}
public void recycle(){
handle.recycle(this);
}
}
public static void main(String[] args){
User user1 = RECYCLER.get();
user1.recycle();
User user2 = RECYCLER.get();
user2.recycle();
System.out.println(user1==user2);
}
}

首先定义了一个Recycler的成员变量RECYCLER, 在匿名内部类中重写了newObject方法, 也就是创建对象的方法, 该方法就是用户自定义的

这里newObject返回的new User(handle), 代表当回收站没有此类对象的时候, 可以通过这种方式创建对象

成员变量RECYCLER, 可以用来对此类对象的回收和再利用

定一个了一个静态内部类User, User中有个成员变量handle, 在构造方法中为其赋值, handle的作用, 就是用于对象回收的

并且定义了一个方法recycle, 方法体中通过handle.recycle(this)这种方式将自身对象进行回收, 通过这步操作, 就可以将对象回收到Recycler中

以上逻辑先做了解, 之后会进行详细分析

在main方法中, 通过RECYCLER的get方法获取一个user, 然后进行回收

再通过get方法将回收站的对象取出, 再次进行回收, 最后判断两次取出的对象是否为一个对象, 最后结果输出为true

以上demo就可以说明Recycler的回收再利用的功能

简单介绍了demo, 我们就详细的分析Recycler的机制

在Recycler的类的源码中, 我们看到这一段逻辑:

private final FastThreadLocal<Stack<T>> threadLocal = new FastThreadLocal<Stack<T>>() {
@Override
protected Stack<T> initialValue() {
return new Stack<T>(Recycler.this, Thread.currentThread(), maxCapacityPerThread, maxSharedCapacityFactor,
ratioMask, maxDelayedQueuesPerThread);
}
};

这一段逻辑我们并不陌生, 在上一小节的学习中我们知道, 这里用于保存线程共享对象, 而这里的共享对象, 就是一个Stack类型的对象

每个stack中维护着一个DefaultHandle类型的数组, 用于盛放回收的对象, 有关stack和线程的关系如图所示:

Netty源码分析第8章(高性能工具类FastThreadLocal和Recycler)---->第3节: recycler的使用和创建

8-3-1

也就是说在每个Recycler中, 都维护着一个线程共享的栈, 用于对一类对象的回收

跟到Stack的构造方法中:

Stack(Recycler<T> parent, Thread thread, int maxCapacity, int maxSharedCapacityFactor,
int ratioMask, int maxDelayedQueues) {
this.parent = parent;
this.thread = thread;
this.maxCapacity = maxCapacity;
availableSharedCapacity = new AtomicInteger(max(maxCapacity / maxSharedCapacityFactor, LINK_CAPACITY));
elements = new DefaultHandle[min(INITIAL_CAPACITY, maxCapacity)];
this.ratioMask = ratioMask;
this.maxDelayedQueues = maxDelayedQueues;
}

首先介绍几个构造方法中初始化的关键属性:

属性parent表示Reclycer对象自身

属性thread表示当前stack绑定的哪个线程

属性maxCapacity表示当前stack的最大容量, 表示stack最多能盛放多少个元素

属性elements, 就表示stack中存储的对象, 类型为DefaultHandle, 可以被外部对象引用, 从而实现回收

属性ratioMask是用来控制对象回收的频率的, 也就是说每次通过Reclycer回收对象的时候, 不是每次都会进行回收, 而是通过该参数控制回收频率

属性maxDelayedQueues, 这里稍微有些复杂, 在很多时候, 一个线程创建的对象, 有可能会被另一个线程所释放, 而另一个线程释放的对象是不会放在当前线程的stack中的, 而是会存放在一个叫做WeakOrderQueue的数据结构中, 里面也是存放着一个个DefaultHandle, WeakOrderQueue会存放线程1创建的并且在线程2进行释放的对象

这里只是稍作了解, 之后的会对此做详细剖析, 这里我们只需知道, maxDelayedQueues属性的意思就是我这个线程能回收几个其他创建的对象的线程, 假设当前线程是线程1, maxDelayedQueues为2, 那么我线程1回收了线程2创建的对象, 又回收了线程3创建的对象, 那么不可能回收线程4创建的对象了, 因为maxDelayedQueues2, 我只能回收两个线程创建的对象

属性availableSharedCapacity, 表示在线程1中创建的对象, 在其他线程中缓存的最大个数, 同样, 相关逻辑会在之后的内容进行剖析

另外介绍两个没有在构造方法初始化的属性:

private WeakOrderQueue cursor, prev;
private volatile WeakOrderQueue head;

这里相当于指针, 用于指向WeakOrderQueue的, 这里也是稍作了解, 之后会进行详细剖析

有关stack异线程之间对象的关系如图所示(简略):

Netty源码分析第8章(高性能工具类FastThreadLocal和Recycler)---->第3节: recycler的使用和创建

8-3-2

我们再继续介绍Recycler的构造方法, 同时熟悉有关stack各个参数的默认值:

protected Recycler() {
this(DEFAULT_MAX_CAPACITY_PER_THREAD);
}

这里调用了重载的构造方法, 并传入了参数DEFAULT_MAX_CAPACITY_PER_THREAD

DEFAULT_MAX_CAPACITY_PER_THREAD的默认值是32768, 在static块中被初始化的, 我们可以跟进去自行分析

这个值就代表的每个线程中, stack中最多回收的元素的个数

继续跟重载的构造方法:

protected Recycler(int maxCapacityPerThread) {
this(maxCapacityPerThread, MAX_SHARED_CAPACITY_FACTOR);
}

这里又调用了重载的构造方法, 并且传入刚才传入的32768和MAX_SHARED_CAPACITY_FACTOR

MAX_SHARED_CAPACITY_FACTOR默认值是2, 同样在static块中进行了初始化, 有关该属性的用处稍后讲解

继续跟构造方法:

protected Recycler(int maxCapacityPerThread, int maxSharedCapacityFactor) {
this(maxCapacityPerThread, maxSharedCapacityFactor, RATIO, MAX_DELAYED_QUEUES_PER_THREAD);
}

这里同样调用了重载的构造方法, 传入了刚才32768和2, 还有两个属性RATIO和MAX_DELAYED_QUEUES_PER_THREAD

RATIO也在static中被初始化, 默认值是8

同上, MAX_DELAYED_QUEUES_PER_THREAD的默认值是2倍cpu核数

我们继续跟构造方法:

protected Recycler(int maxCapacityPerThread, int maxSharedCapacityFactor,
int ratio, int maxDelayedQueuesPerThread) {
ratioMask = safeFindNextPositivePowerOfTwo(ratio) - 1;
if (maxCapacityPerThread <= 0) {
this.maxCapacityPerThread = 0;
this.maxSharedCapacityFactor = 1;
this.maxDelayedQueuesPerThread = 0;
} else {
this.maxCapacityPerThread = maxCapacityPerThread;
this.maxSharedCapacityFactor = max(1, maxSharedCapacityFactor);
this.maxDelayedQueuesPerThread = max(0, maxDelayedQueuesPerThread);
}
}

这里将几个属性进行了初始化

首先看ratioMask, 这里的方法safeFindNextPositivePowerOfTwo的参数ratio为8, 该方法的意思就是大于等于8的2的幂次方-1, 这里就是ratioMask就是7

maxCapacityPerThread是刚才分析的32768, 是一个大于0的数, 所以进入else

maxCapacityPerThread为32768

maxSharedCapacityFactor的值为2

maxDelayedQueuesPerThread的值为2倍CPU核数

我们再回到Stack的构造方法中:

Stack(Recycler<T> parent, Thread thread, int maxCapacity, int maxSharedCapacityFactor,
int ratioMask, int maxDelayedQueues) {
this.parent = parent;
this.thread = thread;
this.maxCapacity = maxCapacity;
availableSharedCapacity = new AtomicInteger(max(maxCapacity / maxSharedCapacityFactor, LINK_CAPACITY));
elements = new DefaultHandle[min(INITIAL_CAPACITY, maxCapacity)];
this.ratioMask = ratioMask;
this.maxDelayedQueues = maxDelayedQueues;
}

根据Recycler初始化属性的逻辑, 我们可以知道Stack中几个属性的值:

maxCapacity默认值为32768

ratioMask默认值为7

maxDelayedQueues默认值是两倍cpu核数

availableSharedCapacity的默认值是32768/2, 也就是16384

以上就是Recycler创建的相关逻辑

上一节: FastThreadLocal的set方法

下一节: recycler中获取对象

Netty源码分析第8章(高性能工具类FastThreadLocal和Recycler)---->第3节: recycler的使用和创建的更多相关文章

  1. Netty源码分析第8章&lpar;高性能工具类FastThreadLocal和Recycler&rpar;----&gt&semi;第1节&colon; FastThreadLocal的使用和创建

    Netty源码分析第八章: 高性能工具类FastThreadLocal和Recycler 概述: FastThreadLocal我们在剖析堆外内存分配的时候简单介绍过, 它类似于JDK的ThreadL ...

  2. Netty源码分析第8章&lpar;高性能工具类FastThreadLocal和Recycler&rpar;----&gt&semi;第7节&colon; 获取异线程释放的对象

    Netty源码分析第八章: 高性能工具类FastThreadLocal和Recycler 第七节: 获取异线程释放的对象 上一小节分析了异线程回收对象, 原理是通过与stack关联的WeakOrder ...

  3. Netty源码分析第8章&lpar;高性能工具类FastThreadLocal和Recycler&rpar;----&gt&semi;第2节&colon; FastThreadLocal的set方法

    Netty源码分析第八章: 高性能工具类FastThreadLocal和Recycler 第二节: FastThreadLocal的set方法 上一小节我们学习了FastThreadLocal的创建和 ...

  4. Netty源码分析第8章&lpar;高性能工具类FastThreadLocal和Recycler&rpar;----&gt&semi;第4节&colon; recycler中获取对象

    Netty源码分析第八章: 高性能工具类FastThreadLocal和Recycler 第四节: recycler中获取对象 这一小节剖析如何从对象回收站中获取对象: 我们回顾上一小节demo的ma ...

  5. Netty源码分析第8章&lpar;高性能工具类FastThreadLocal和Recycler&rpar;----&gt&semi;第5节&colon; 同线程回收对象

    Netty源码分析第八章: 高性能工具类FastThreadLocal和Recycler 第五节: 同线程回收对象 上一小节剖析了从recycler中获取一个对象, 这一小节分析在创建和回收是同线程的 ...

  6. Netty源码分析第8章&lpar;高性能工具类FastThreadLocal和Recycler&rpar;----&gt&semi;第6节&colon; 异线程回收对象

    Netty源码分析第八章: 高性能工具类FastThreadLocal和Recycler 第六节: 异线程回收对象 异线程回收对象, 就是创建对象和回收对象不在同一条线程的情况下, 对象回收的逻辑 我 ...

  7. Netty源码分析第3章&lpar;客户端接入流程&rpar;----&gt&semi;第1节&colon; 初始化NioSockectChannelConfig

    Netty源码分析第三章: 客户端接入流程 概述: 之前的章节学习了server启动以及eventLoop相关的逻辑, eventLoop轮询到客户端接入事件之后是如何处理的?这一章我们循序渐进, 带 ...

  8. Netty源码分析第3章&lpar;客户端接入流程&rpar;----&gt&semi;第2节&colon; 处理接入事件之handle的创建

    Netty源码分析第三章: 客户端接入流程 第二节: 处理接入事件之handle的创建 上一小节我们剖析完成了与channel绑定的ChannelConfig初始化相关的流程, 这一小节继续剖析客户端 ...

  9. Netty源码分析第3章&lpar;客户端接入流程&rpar;----&gt&semi;第3节&colon; NioSocketChannel的创建

    Netty源码分析第三章: 客户端接入流程 第三节: NioSocketChannel的创建 回到上一小节的read()方法: public void read() { //必须是NioEventLo ...

随机推荐

  1. Erlang generic standard behaviours -- gen&lowbar;server module

    在分析完gen module (http://www.cnblogs.com/--00/p/4271386.html)之后,就可以开始进入gen_server 的主体module 了.gen_serv ...

  2. -Xbootclasspath参数、java -jar参数运行应用时classpath的设置方法

    当用java -jar yourJarExe.jar来运行一个经过打包的应用程序的时候,你会发现如何设置-classpath参数应用程序都找不到相应的第三方类,报ClassNotFound错误.实际上 ...

  3. Linux 寻找安装路径

    1.whereis 语法:  # whereis [-bmsu] 文件或者目录名称  参数说 明:  -b : 只找二进制文件  -m: 只找在说明文件manual路径下的文件  -s : 只找sou ...

  4. python变量传递给系统命令的方法

    python程序内执行shell命令可以有几种方式,在http://www.cnblogs.com/xuxm2007/archive/2011/01/17/1937220.html 里都有详细介绍. ...

  5. Vue-cli 记录

    出自http://www.cnblogs.com/nutritious/p/6494479.html 先给出能正确安装的步骤: 1.进盘符 2,为啥不用npm,这是国外的东西,有些电脑无法FQ,会导致 ...

  6. 关于使用国内dock仓库,网易、DaoCloud

    使用国内docker镜像仓库,大大提高镜像的下载速度,从docker hub下载慢的不要不要的,甚至根本下载不了镜像,在docker for windows 18.06中增加一个配置即可,非常简单,具 ...

  7. jQuery中height&lpar;&rpar;不能精确计算的问题

    jQuery中关于高度的计算有三个方法:outerHeight().innerHeight().height() outerHeight():获取元素集合中第一个元素的当前计算高度值,包括paddin ...

  8. ubuntu16&period;04 下使用vscode备忘录

    微软的vscode是为程序员做了非常大贡献,其强大的功能和各个平台的可移植性给vscode带来了非常大的火力.在程序员的世界中非常的流行,算是一线明星了. 我把使用过程中遇到的一些问题做个记录,方便自 ...

  9. Hdoj 1233&period;还是畅通工程 题解

    Problem Description 某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离.省*"畅通工程"的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直 ...

  10. iOS 获取IP

    #import <ifaddrs.h> //获取IP #import <arpa/inet.h> //只能获取WIFI下的IP地址 + (NSString *)getIPAdd ...