聚类是一种无监督的学习,将相似的对象放到同一簇中,有点像是全自动分类,簇内的对象越相似,簇间的对象差别越大,则聚类效果越好。
1、k均值聚类算法
k均值聚类将数据分为k个簇,每个簇通过其质心,即簇中所有点的中心来描述。首先随机确定k个初始点作为质心,然后将数据集分配到距离最近的簇中。然后将每个簇的质心更新为所有数据集的平均值。然后再进行第二次划分数据集,直到聚类结果不再变化为止。
伪代码为
随机创建k个簇质心
当任意一个点的簇分配发生改变时:
对数据集中的每个数据点:
对每个质心:
计算数据集到质心的距离
将数据集分配到最近距离质心对应的簇
对每一个簇,计算簇中所有点的均值并将均值作为质心
python实现
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
|
import numpy as np
import matplotlib.pyplot as plt
def loadDataSet(fileName):
dataMat = []
with open (fileName) as f:
for line in f.readlines():
line = line.strip().split( '\t' )
dataMat.append(line)
dataMat = np.array(dataMat).astype(np.float32)
return dataMat
def distEclud(vecA,vecB):
return np.sqrt(np. sum (np.power((vecA - vecB), 2 )))
def randCent(dataSet,k):
m = np.shape(dataSet)[ 1 ]
center = np.mat(np.ones((k,m)))
for i in range (m):
centmin = min (dataSet[:,i])
centmax = max (dataSet[:,i])
center[:,i] = centmin + (centmax - centmin) * np.random.rand(k, 1 )
return center
m = np.shape(dataSet)[ 0 ]
clusterAssment = np.mat(np.zeros((m, 2 )))
centroids = createCent(dataSet,k)
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range (m):
minDist = np.inf
minIndex = - 1
for j in range (k):
distJI = distMeans(dataSet[i,:],centroids[j,:])
if distJI < minDist:
minDist = distJI
minIndex = j
if clusterAssment[i, 0 ] ! = minIndex:
clusterChanged = True
clusterAssment[i,:] = minIndex,minDist * * 2
for cent in range (k):
ptsInClust = dataSet[np.nonzero(clusterAssment[:, 0 ].A = = cent)[ 0 ]]
centroids[cent,:] = np.mean(ptsInClust,axis = 0 )
return centroids,clusterAssment
data = loadDataSet( 'testSet.txt' )
muCentroids, clusterAssing = kMeans(data, 4 )
fig = plt.figure( 0 )
ax = fig.add_subplot( 111 )
ax.scatter(data[:, 0 ],data[:, 1 ],c = clusterAssing[:, 0 ].A)
plt.show()
print (clusterAssing)
|
2、二分k均值算法
K均值算法可能会收敛到局部最小值,而非全局最小。一种用于度量聚类效果的指标为误差平方和(SSE)。因为取了平方,更加重视原理中心的点。为了克服k均值算法可能会收敛到局部最小值的问题,有人提出来二分k均值算法。
首先将所有点作为一个簇,然后将该簇一分为二,然后选择所有簇中对其划分能够最大程度减低SSE的值的簇,直到满足指定簇数为止。
伪代码
将所有点看成一个簇
计算SSE
while 当簇数目小于k时:
for 每一个簇:
计算总误差
在给定的簇上进行k均值聚类(k=2)
计算将该簇一分为二的总误差
选择使得误差最小的那个簇进行划分操作
python实现
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
|
import numpy as np
import matplotlib.pyplot as plt
def loadDataSet(fileName):
dataMat = []
with open (fileName) as f:
for line in f.readlines():
line = line.strip().split( '\t' )
dataMat.append(line)
dataMat = np.array(dataMat).astype(np.float32)
return dataMat
def distEclud(vecA,vecB):
return np.sqrt(np. sum (np.power((vecA - vecB), 2 )))
def randCent(dataSet,k):
m = np.shape(dataSet)[ 1 ]
center = np.mat(np.ones((k,m)))
for i in range (m):
centmin = min (dataSet[:,i])
centmax = max (dataSet[:,i])
center[:,i] = centmin + (centmax - centmin) * np.random.rand(k, 1 )
return center
def kMeans(dataSet,k,distMeans = distEclud,createCent = randCent):
m = np.shape(dataSet)[ 0 ]
clusterAssment = np.mat(np.zeros((m, 2 )))
centroids = createCent(dataSet,k)
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range (m):
minDist = np.inf
minIndex = - 1
for j in range (k):
distJI = distMeans(dataSet[i,:],centroids[j,:])
if distJI < minDist:
minDist = distJI
minIndex = j
if clusterAssment[i, 0 ] ! = minIndex:
clusterChanged = True
clusterAssment[i,:] = minIndex,minDist * * 2
for cent in range (k):
ptsInClust = dataSet[np.nonzero(clusterAssment[:, 0 ].A = = cent)[ 0 ]]
centroids[cent,:] = np.mean(ptsInClust,axis = 0 )
return centroids,clusterAssment
def biKmeans(dataSet,k,distMeans = distEclud):
m = np.shape(dataSet)[ 0 ]
clusterAssment = np.mat(np.zeros((m, 2 )))
centroid0 = np.mean(dataSet,axis = 0 ).tolist()
centList = [centroid0]
for j in range (m):
clusterAssment[j, 1 ] = distMeans(dataSet[j,:],np.mat(centroid0)) * * 2
while ( len (centList)<k):
lowestSSE = np.inf
for i in range ( len (centList)):
ptsInCurrCluster = dataSet[np.nonzero(clusterAssment[:, 0 ].A = = i)[ 0 ],:]
centroidMat,splitClustAss = kMeans(ptsInCurrCluster, 2 ,distMeans)
sseSplit = np. sum (splitClustAss[:, 1 ])
sseNotSplit = np. sum (clusterAssment[np.nonzero(clusterAssment[:, 0 ].A ! = i)[ 0 ], 1 ])
if (sseSplit + sseNotSplit) < lowestSSE:
bestCentToSplit = i
bestNewCents = centroidMat.copy()
bestClustAss = splitClustAss.copy()
lowestSSE = sseSplit + sseNotSplit
print ( 'the best cent to split is ' ,bestCentToSplit)
# print('the len of the bestClust')
bestClustAss[np.nonzero(bestClustAss[:, 0 ].A = = 1 )[ 0 ], 0 ] = len (centList)
bestClustAss[np.nonzero(bestClustAss[:, 0 ].A = = 0 )[ 0 ], 0 ] = bestCentToSplit
clusterAssment[np.nonzero(clusterAssment[:, 0 ].A = = bestCentToSplit)[ 0 ],:] = bestClustAss.copy()
centList[bestCentToSplit] = bestNewCents[ 0 ,:].tolist()[ 0 ]
centList.append(bestNewCents[ 1 ,:].tolist()[ 0 ])
return np.mat(centList),clusterAssment
data = loadDataSet( 'testSet2.txt' )
muCentroids, clusterAssing = biKmeans(data, 3 )
fig = plt.figure( 0 )
ax = fig.add_subplot( 111 )
ax.scatter(data[:, 0 ],data[:, 1 ],c = clusterAssing[:, 0 ].A,cmap = plt.cm.Paired)
ax.scatter(muCentroids[:, 0 ],muCentroids[:, 1 ])
plt.show()
print (clusterAssing)
print (muCentroids)
|
代码及数据集下载:K-means
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:http://blog.****.net/weixin_37895339/article/details/78634144