[BZOJ1053] [HAOI2007] 反素数ant (搜索)

时间:2023-11-16 21:14:38

Description

  对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。
  如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数。例如,整数1,2,4,6等都是反质数。
  现在给定一个数N,你能求出不超过N的最大的反质数么?

Input

  一个数N(1<=N<=2,000,000,000)。

Output

  不超过N的最大的反质数。

Sample Input

1000

Sample Output

840

HINT

Source

Solution

  额,一些玄学证明了这个数的素因子只可能是前12个素数,搜索即可。

  。。。典型O(跑得过) 233

 #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll p[] = {, , , , , , , , , , , };
ll n, ans, gans; void DFS(ll x, ll gx, ll id, ll cnt)
{
if(gx == gans && x < ans) ans = x;
if(gx > gans) ans = x, gans = gx;
for(int i = ; i <= cnt; i++)
if(x * p[id] <= n)
DFS(x = x * p[id], gx * (i + ), id + , i);
} int main()
{
cin >> n;
DFS(, , , );
cout << ans << endl;
return ;
}

  解释一下DFS的参数:

  x:当前计算的数为x

  gx:g(x)的值

  id:当前要枚举第id个素数

  cnt:当前第id-1个素数的次数为cnt。玄学证明了p[id]的次数一定不超过p[i](0 < i < id)的次数。