鸿蒙内核源码分析(进程通讯篇) | 九种进程间通讯方式速揽 | 百篇博客分析OpenHarmony源码 | v28.03

时间:2022-09-01 07:50:23

鸿蒙内核源码分析(进程通讯篇) | 九种进程间通讯方式速揽 | 百篇博客分析OpenHarmony源码 | v28.03

百篇博客系列篇.本篇为:

进程通讯相关篇为:

鸿蒙内核源码分析(进程通讯篇) | 九种进程间通讯方式速揽 | 百篇博客分析OpenHarmony源码 | v28.03

进程间为何要通讯 ?

鸿蒙内核默认支持 64个进程和128个任务,由进程池和任务池统一管理.内核设计尽量不去打扰它们,让各自过好各自的日子, 但大家毕竟在一口锅里吃饭, 不可能不与外界联系, 联系就得有渠道,有规矩.

举两个应用场景说明下通讯的必要性:

一.被动式 广为熟知的shell命令 kill 9 13 ,是通过 shell任务给 13号进程发送一个干掉它的信号.

#define SIGKILL   9		//常用的命令 kill 9 13

这是被动式通讯的场景,至于为什么要干掉你,原因可能很多啊,很可能是检测到13占用内存太多了,也可能13太低调长期不活跃,启动新进程发现没位置了,得先收了你.总之系统必须得有对付你的抓手,可以随时登门查水电表.

二.主动式的 ,比如要访问某些公共资源(全局变量,消息队列),而资源有限或具有排他性,别人正在使用导致你不能用, 所以需统一管理,要用就必须要先申请,按规矩办事,毕竟和谐社会没规矩不成方圆.如果申请失败了就需要排队了,同时还要让出CPU给别人占用了,否则占着茅坑不办事这样对大家都不好撒.

大致有以下几种通讯需求:

(1).数据传输: 一个进程需要将它的数据发送给另一个进程,发送的数据量在一个字节到KB字节之间.(liteipc消息队列默认1K)

(2).共享数据: 多个进程想要操作共享数据,一个进程对共享数据的修改,别的进程应该立刻看到。

(3).通知事件: 一个进程需要向另一个或一组进程发送消息,通知它(它们)发生了某种事件(如进程终止时要通知父进程)。

(4).资源共享: 多个进程之间共享同样的资源。为了做到这一点,需要内核提供锁和同步机制。

(5).进程控制: 有些进程希望完全控制另一个进程的执行(如Debug进程),此时控制进程希望能够拦截另一个进程的所有陷入和异常,并能够及时知道它的状态改变。

内核目录和系列篇更新

内核有个专门的IPC目录,详见如下. 可直接点击查看注解源码.

鸿蒙内核源码分析(进程通讯篇) | 九种进程间通讯方式速揽 | 百篇博客分析OpenHarmony源码 | v28.03

进程间九种通讯方式

1.管道pipe(fs_syscall.c)

管道是一种最基本的IPC机制,作用于有血缘关系的进程之间,完成数据传递。

调用pipe系统函数即可创建一个管道。有如下特质:

  1. 其本质是一个伪文件(实为内核缓冲区)

  2. 由两个文件描述符引用,一个表示读端,一个表示写端。

  3. 规定数据从管道的写端流入管道,从读端流出。

管道的原理: 管道实为内核使用环形队列机制,借助内核缓冲区(4k)实现。

管道的局限性:

① 数据自己读不能自己写。

② 数据一旦被读走,便不在管道中存在,不可反复读取。

③ 由于管道采用半双工通信方式。因此,数据只能在一个方向上流动。

④ 只能在有公共祖先的进程间使用管道。

常见的通信方式有,单工通信、半双工通信、全双工通信。

这部分后系列篇文件相关篇中会重点讲,敬请关注. 详细看 SysPipe 函数.

2.信号(los_signal.c)

信号思想来自Unix,在发展了50年之后,许多方面都没有发生太大的变化.信号可以由内核产生,也可以由用户进程产生,并由内核传送给特定的进程或线程(组),若这个进程注册/安装了自己的信号处理程序,则内核会调用这个函数去处理信号,否则则执行默认的函数或者忽略.信号分为两大类:可靠信号与不可靠信号,前32种信号为不可靠信号,后32种为可靠信号。长这样:

#define SIGHUP    1	//终端挂起或者控制进程终止
#define SIGINT 2 //键盘中断(如break键被按下)
#define SIGQUIT 3 //键盘的退出键被按下
#define SIGILL 4 //非法指令
#define SIGTRAP 5 //跟踪陷阱(trace trap),启动进程,跟踪代码的执行
#define SIGABRT 6 //由abort(3)发出的退出指令
#define SIGIOT SIGABRT
#define SIGBUS 7 //总线错误
#define SIGFPE 8 //浮点异常
#define SIGKILL 9 //常用的命令 kill 9 13
#define SIGUSR1 10 //用户自定义信号1

信号为系统提供了一种进程间异步通讯的方式,一个进程不必通过任何操作来等待信号的到达。事实上,进程也不可能知道信号到底什么时候到达。一般来说,只需用户进程提供信号处理函数,内核会想方设法调用信号处理函数,处理过程如图所示:

鸿蒙内核源码分析(进程通讯篇) | 九种进程间通讯方式速揽 | 百篇博客分析OpenHarmony源码 | v28.03

个人把这种异步通讯过程理解为生产者(安装和发送信号)和消费者(捕捉和处理信号)两个部分,分姊妹两篇已完成

3.消息队列(los_queue.c)

基本概念

队列又称消息队列,是一种常用于任务间通信的数据结构。队列接收来自任务或中断的

不固定长度消息,并根据不同的接口确定传递的消息是否存放在队列空间中。

任务能够从队列里面读取消息,当队列中的消息为空时,挂起读取任务;当队列中有新消息时,

挂起的读取任务被唤醒并处理新消息。任务也能够往队列里写入消息,当队列已经写满消息时,

挂起写入任务;当队列中有空闲消息节点时,挂起的写入任务被唤醒并写入消息。如果将

读队列和写队列的超时时间设置为0,则不会挂起任务,接口会直接返回,这就是非阻塞模式。

消息队列提供了异步处理机制,允许将一个消息放入队列,但不立即处理。同时队列还有缓冲消息的作用。

队列特性

消息以先进先出的方式排队,支持异步读写。

读队列和写队列都支持超时机制。

每读取一条消息,就会将该消息节点设置为空闲。

发送消息类型由通信双方约定,可以允许不同长度(不超过队列的消息节点大小)的消息。

一个任务能够从任意一个消息队列接收和发送消息。

多个任务能够从同一个消息队列接收和发送消息。

创建队列时所需的队列空间,默认支持接口内系统自行动态申请内存的方式,同时也支持将用户分配的队列空间作为接口入参传入的方式。

详细可前往查看:

4.共享内存(shm.c)

共享内存是进程间通信中最简单的方式之一。共享内存允许两个或更多进程访问同一块物理内存,每个进程都要单独对这块物理内存进行映射.当一个进程改变了这块地址中的内容的时候,该物理页框将被标记为脏页,如此其它进程都会知道内容发生了更改。

这部分后系列篇内存相关篇中会重点讲,内存部分虽已写过几篇,但是没讲透,要重新再梳理.

5.信号量(los_sem.c)

基本概念

信号量(Semaphore)是一种实现任务间通信的机制,可以实现任务间同步或共享资源的互斥访问。

一个信号量的数据结构中,通常有一个计数值,用于对有效资源数的计数,表示剩下的可被使用的共享资源数。

对信号量有个形象的比喻 停车场的停车位, 进停车场前看下屏幕上实时显示剩余车位,0表示不能进,只有大于0才能进入,进入后自动减1,出口处也加了监测,出去后剩余车位增加1个.

使用场景

在多任务系统中,信号量是一种非常灵活的同步方式,可以运用在多种场合中,实现锁、同步、资源计数等功能,

也能方便的用于任务与任务,中断与任务的同步中。常用于协助一组相互竞争的任务访问共享资源。

详细可前往查看:

6.互斥锁 (los_mux.c) :

基本概念

互斥锁又称互斥型信号量,是一种特殊的二值性信号量,用于实现对临界资源的独占式处理。

另外,互斥锁可以解决信号量存在的优先级翻转问题。

任意时刻互斥锁只有两种状态,开锁或闭锁。当任务持有时,这个任务获得该互斥锁的所有权,

互斥锁处于闭锁状态。当该任务释放锁后,任务失去该互斥锁的所有权,互斥锁处于开锁状态。

当一个任务持有互斥锁时,其他任务不能再对该互斥锁进行开锁或持有。

详细可前往查看:

7.快锁 (los_futex.c)

futex 是Fast Userspace muTexes的缩写(快速用户空间互斥体),是一种用户态和内核态混合的同步机制。首先,同步的进程间通过mmap共享一段内存,futex变量就位于这段共享的内存中且操作是原子的,当进程尝试进入互斥区或者退出互斥区的时候,先去查看共享内存中的futex变量,如果没有竞争发生,则只修改futex,而不用再执行系统调用了。当通过访问futex变量告诉进程有竞争发生,则还是得执行系统调用去完成相应的处理(wait 或者 wake up)。

注解版同步到官方最新源码后,发现快锁的部分改动很大,这部分要重新注解,敬请留意.

8.事件 (los_event.c)

基本概念

事件(Event)是一种任务间通信的机制,可用于任务间的同步。

多任务环境下,任务之间往往需要同步操作,一个等待即是一个同步。事件可以提供一对多、多对多的同步操作。

一对多同步模型:一个任务等待多个事件的触发。可以是任意一个事件发生时唤醒任务处理事件,也可以是几个事件都发生后才唤醒任务处理事件。

多对多同步模型:多个任务等待多个事件的触发。

事件特点

任务通过创建事件控制块来触发事件或等待事件。

事件间相互独立,内部实现为一个32位无符号整型,每一位标识一种事件类型。第25位不可用,因此最多可支持31种事件类型。

事件仅用于任务间的同步,不提供数据传输功能。

多次向事件控制块写入同一事件类型,在被清零前等效于只写入一次。

多个任务可以对同一事件进行读写操作。

支持事件读写超时机制。

事件可应用于多种任务同步场景,在某些同步场景下可替代信号量。

使用场景

队列用于任务间通信,可以实现消息的异步处理。同时消息的发送方和接收方不需要彼此联系,两者间是解耦的。

详细可前往查看:

9.文件消息队列 (hm_liteipc.c)

基于文件实现的消息队列,特点是队列中消息数量多(256个),传递消息内容大(可到1K)

#define IPC_MSG_DATA_SZ_MAX 1024	//最大的消息内容 1K ,posix最大消息内容 64个字节
#define IPC_MSG_OBJECT_NUM_MAX 256 //最大的消息数量256 ,posix最大消息数量 16个

文件消息队列隐约感觉鸿蒙的分布式通讯,跨屏之类的功能是靠它实现的,分布式的代码还没研究,尚不清楚,如果有了解的请告知.后续要重点研究下跨应用通讯的技术实现.

鸿蒙内核源码分析.总目录

v08.xx 鸿蒙内核源码分析(总目录) | 百万汉字注解 百篇博客分析 | 51.c.h .o

百万汉字注解.百篇博客分析

百万汉字注解 >> 精读鸿蒙源码,中文注解分析, 深挖地基工程,大脑永久记忆,四大码仓每日同步更新< gitee| github| csdn| coding >

百篇博客分析 >> 故事说内核,问答式导读,生活式比喻,表格化说明,图形化展示,主流站点定期更新中< 51cto| csdn| harmony| osc >

关注不迷路.代码即人生

鸿蒙内核源码分析(进程通讯篇) | 九种进程间通讯方式速揽 | 百篇博客分析OpenHarmony源码 | v28.03

QQ群:790015635 | 入群密码: 666

原创不易,欢迎转载,但请注明出处.

鸿蒙内核源码分析(进程通讯篇) | 九种进程间通讯方式速揽 | 百篇博客分析OpenHarmony源码 | v28.03的更多相关文章

  1. 鸿蒙内核源码分析&lpar;消息队列篇&rpar; &vert; 进程间如何异步传递大数据 &vert; 百篇博客分析OpenHarmony源码 &vert; v33&period;02

    百篇博客系列篇.本篇为: v33.xx 鸿蒙内核源码分析(消息队列篇) | 进程间如何异步传递大数据 | 51.c.h .o 进程通讯相关篇为: v26.xx 鸿蒙内核源码分析(自旋锁篇) | 自旋锁 ...

  2. 鸿蒙内核源码分析&lpar;事件控制篇&rpar; &vert; 任务间多对多的同步方案 &vert; 百篇博客分析OpenHarmony源码 &vert; v30&period;02

    百篇博客系列篇.本篇为: v30.xx 鸿蒙内核源码分析(事件控制篇) | 任务间多对多的同步方案 | 51.c.h .o 进程通讯相关篇为: v26.xx 鸿蒙内核源码分析(自旋锁篇) | 自旋锁当 ...

  3. 鸿蒙内核源码分析&lpar;信号量篇&rpar; &vert; 谁在负责解决任务的同步 &vert; 百篇博客分析OpenHarmony源码 &vert; v29&period;01

    百篇博客系列篇.本篇为: v29.xx 鸿蒙内核源码分析(信号量篇) | 谁在负责解决任务的同步 | 51.c.h .o 进程通讯相关篇为: v26.xx 鸿蒙内核源码分析(自旋锁篇) | 自旋锁当立 ...

  4. 鸿蒙内核源码分析&lpar;互斥锁篇&rpar; &vert; 比自旋锁丰满的互斥锁 &vert; 百篇博客分析OpenHarmony源码 &vert; v27&period;02

    百篇博客系列篇.本篇为: v27.xx 鸿蒙内核源码分析(互斥锁篇) | 比自旋锁丰满的互斥锁 | 51.c.h .o 进程通讯相关篇为: v26.xx 鸿蒙内核源码分析(自旋锁篇) | 自旋锁当立贞 ...

  5. 鸿蒙内核源码分析&lpar;自旋锁篇&rpar; &vert; 当立贞节牌坊的好同志 &vert; 百篇博客分析OpenHarmony源码 &vert; v26&period;02

    百篇博客系列篇.本篇为: v26.xx 鸿蒙内核源码分析(自旋锁篇) | 当立贞节牌坊的好同志 | 51.c.h .o 进程通讯相关篇为: v26.xx 鸿蒙内核源码分析(自旋锁篇) | 当立贞节牌坊 ...

  6. 鸿蒙源码分析系列&lpar;总目录&rpar; &vert; 百万汉字注解 百篇博客分析 &vert; 深入挖透OpenHarmony源码 &vert; v8&period;23

    百篇博客系列篇.本篇为: v08.xx 鸿蒙内核源码分析(总目录) | 百万汉字注解 百篇博客分析 | 51.c.h .o 百篇博客.往期回顾 在给OpenHarmony内核源码加注过程中,整理出以下 ...

  7. v76&period;01 鸿蒙内核源码分析&lpar;共享内存&rpar; &vert; 进程间最快通讯方式 &vert; 百篇博客分析OpenHarmony源码

    百篇博客分析|本篇为:(共享内存篇) | 进程间最快通讯方式 进程通讯相关篇为: v26.08 鸿蒙内核源码分析(自旋锁) | 当立贞节牌坊的好同志 v27.05 鸿蒙内核源码分析(互斥锁) | 同样 ...

  8. 鸿蒙内核源码分析&lpar;进程概念篇&rpar; &vert; 进程在管理哪些资源 &vert; 百篇博客分析OpenHarmony源码 &vert; v24&period;01

    百篇博客系列篇.本篇为: v24.xx 鸿蒙内核源码分析(进程概念篇) | 进程在管理哪些资源 | 51.c.h .o 进程管理相关篇为: v02.xx 鸿蒙内核源码分析(进程管理篇) | 谁在管理内 ...

  9. 鸿蒙内核源码分析&lpar;进程管理篇&rpar; &vert; 谁在管理内核资源 &vert; 百篇博客分析OpenHarmonyOS &vert; v2&period;07

    百篇博客系列篇.本篇为: v02.xx 鸿蒙内核源码分析(进程管理篇) | 谁在管理内核资源 | 51.c.h .o 进程管理相关篇为: v02.xx 鸿蒙内核源码分析(进程管理篇) | 谁在管理内核 ...

随机推荐

  1. git学习(四):撤销修改和撤销删除

    修改有两种情况 在工作区修改但没有add到暂存区 git checkout -- <file> 在工作区修改了也add到暂存区 git reset HEAD <file> 先撤 ...

  2. 学习django之构建Web是Meta嵌套类的几处使用

    Django中meta嵌套类的使用 1.模型中使用嵌套类 在定义抽象模型时如: class Meta : abstract=true 用来指明你创建的模型是一个抽象基础类的模型继承. 2.在一个对象对 ...

  3. PHP 注册树模式

    /** * 注册树模式 * 将对象注册到一个类中 * 通过该类实现全局访问操作对象 */ class Tree { private static $treeList = []; private fun ...

  4. Python核心编程读笔 4

    第五章 数字 二.整形 1 布尔型 2 标准整数类型 3 长整型 数字后面加L,能表示非常非常大的数字 目前,整形和长整型逐渐统一!!! 三.双精度浮点数 四.复数 有关复数的几个概念: 表示虚数的语 ...

  5. WinSock 异步I&sol;O模型

    如果你想在Windows平台上构建服务器应用,那么I/O模型是你必须考虑的. Windows操作系统提供了五种I/O模型,分别是选择(select)模型,异步选择(WSAAsyncSelect)模型, ...

  6. C&plus;&plus;学习(三十六)(C语言部分)之 链表2

    测试代码笔记如下: #include<stdio.h> #include<stdlib.h> typedef struct node { int data;//数据 struc ...

  7. python的arp扫描

    python的arp扫描 from optparse import *from scapy.all import *parser = OptionParser()parser.add_option(& ...

  8. FileInputStream类与FileOutputStream类

    FileInputStream类是InputStream类的子类.他实现了文件的读取,是文件字节输入流.该类适用于比较简单的文件读取,其所有方法都是从InputStream类继承并重写的.创建文件字节 ...

  9. Oracle中的rowid

    ROWID是ORACLE中的一个重要的概念.用于定位数据库中一条记录的一个相对唯一地址值.通常情况下,该值在该行数据插入到数据库表时即被确定且唯一.ROWID它是一个伪列,它并不实际存在于表中.它是O ...

  10. C&num; try catch嵌套

    try catch嵌套之后出现异常执行顺序: static void Main(string[] args) { try { Console.WriteLine("------------- ...