BZOJ3481 DZY Loves Math III(数论+Pollard_Rho)

时间:2023-11-13 13:37:44

  考虑对于每一个x有多少个合法解。得到ax+by=c形式的方程。如果gcd(x,y)|c,则a在0~y-1范围内的解的个数为gcd(x,y)。也就是说现在所要求的是Σ[gcd(x,P)|Q]*gcd(x,P)。

  对这个式子套路地枚举gcd,可以得到Σdφ(P/d) (d|gcd(P,Q))。质因子间相互独立,考虑每个质因子的贡献再累乘。如果d取完了P的某项质因子,那么该质因子的贡献为piqi,否则为(pi-1)piqi-1。于是rho分解完质因数就可以算了。

  注意特判Q=0。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define P 1000000007
#define ll long long
ll read()
{
ll x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,cntp=,cntq=,ans=;
ll p[],q[],a[],b[],c[],d[];
ll gcd(ll n,ll m){return m==?n:gcd(m,n%m);}
ll ksc(ll a,ll b,ll p)
{
ll t=a*b-(ll)((long double)a*b/p+0.5)*p;
return (t<)?t+p:t;
}
ll ksm(int a,ll k,ll p)
{
if (k==) return ;
ll tmp=ksm(a,k>>,p);tmp=ksc(tmp,tmp,p);
if (k&) return ksc(tmp,a,p);else return tmp;
}
bool check(int k,ll n)
{
if (k>=n) return ;
ll p=n-;
ll t=ksm(k,p,n);
if (t==n-) return ;
if (t!=) return ;
while (!(p&))
{
p>>=;
ll t=ksm(k,p,n);
if (t==n-) return ;
if (t!=) return ;
}
return ;
}
bool Miller_Rabin(ll n)
{
if (n==) return ;
for (int i=;i*i<=min(n,100ll);i++)
if (n%i==) return n==i;
if (n<=) return ;
else return check(,n)&&check(,n)&&check(,n)&&check(,n)&&check(,n)&&n!=;
}
ll f(ll x,ll n,int c){return (ksc(x,x,n)+c)%n;}
void Pollard_Rho(ll n,ll *a,int &cnt)
{
if (n==) return;
if (Miller_Rabin(n)) {a[++cnt]=n;return;}
if (n<=) for (int i=;i<=n;i++) if (n%i==&&Miller_Rabin(n/i)) {a[++cnt]=n/i;Pollard_Rho(i,a,cnt);return;}
while ()
{
int c=rand()%(n-)+;
ll x=(rand()%n+c)%n,y=x;
do
{
ll z=gcd(abs(x-y),n);
if (z>&&z<n) {Pollard_Rho(n/z,a,cnt),Pollard_Rho(z,a,cnt);return;}
}while ((x=f(x,n,c))!=(y=f(f(y,n,c),n,c)));
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3481.in","r",stdin);
freopen("bzoj3481.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();srand();
cntp=;for (int i=;i<=n;i++) p[i]=read(),Pollard_Rho(p[i],a,cntp);
cntq=;for (int i=;i<=n;i++) q[i]=read(),Pollard_Rho(q[i],b,cntq);
sort(a+,a+cntp+);sort(b+,b+cntq+);
for (int i=;i<=cntp;i++)
{
int t=i;
while (a[t+]==a[i]) t++;
c[i]=t-i+;i=t;
}
for (int i=;i<=cntq;i++)
{
int t=i;
while (b[t+]==b[i]) t++;
d[i]=t-i+;i=t;
}
for (int i=;i<=cntp;i++)
if (c[i]&&!c[i-])
for (int j=i-;j&&!c[j];j--) c[j]=c[j+],c[j+]=;
cntp=unique(a+,a+cntp+)-a-;
for (int i=;i<=cntq;i++)
if (d[i]&&!d[i-])
for (int j=i-;j&&!d[j];j--) d[j]=d[j+],d[j+]=;
cntq=unique(b+,b+cntq+)-b-;
for (int i=;i<=cntp;i++) a[i]%=P;
for (int i=;i<=cntq;i++) b[i]%=P;
if (b[]==)
{
cntq=cntp;
for (int i=;i<=cntp;i++) b[i]=a[i],d[i]=c[i];
}
for (int j=;j<=cntp;j++)
{
int x=;
for (int i=;i<=cntq;i++)
if (b[i]==a[j]) {x=d[i];break;}
if (x<c[j]) ans=1ll*ans*ksm(a[j],c[j]-,P)%P*(x+)%P*(a[j]-)%P;
else ans=1ll*ans*ksm(a[j],c[j]-,P)%P*(1ll*c[j]*(a[j]-)%P+a[j])%P;
}
cout<<ans<<endl;
return ;
}