FZU 2105Digits Count(线段树 + 成段更新)

时间:2023-11-12 17:47:38

Description

Given N integers A={A[0],A[1],...,A[N-1]}. Here we have some operations:

Operation 1: AND opn L R

Here opn, L and R are integers.

For L≤i≤R, we do A[i]=A[i] AND opn (here "AND" is bitwise operation).

Operation 2: OR opn L R

Here opn, L and R are integers.

For L≤i≤R, we do A[i]=A[i] OR opn (here "OR" is bitwise operation).

Operation 3: XOR opn L R

Here opn, L and R are integers.

For L≤i≤R, we do A[i]=A[i] XOR opn (here "XOR" is bitwise operation).

Operation 4: SUM L R

We want to know the result of A[L]+A[L+1]+...+A[R].

Now can you solve this easy problem?

Input

The first line of the input contains an integer T, indicating the number of test cases. (T≤100)

Then T cases, for any case, the first line has two integers n and m (1≤n≤1,000,000, 1≤m≤100,000), indicating the number of elements in A and the number of operations.

Then one line follows n integers A[0], A[1], ..., A[n-1] (0≤A[i]<16,0≤i<n).

Then m lines, each line must be one of the 4 operations above. (0≤opn≤15)

Output

For each test case and for each "SUM" operation, please output the result with a single line.

Sample Input

1 4 4 1 2 4 7 SUM 0 2 XOR 5 0 0 OR 6 0 3 SUM 0 2

Sample Output

7 18

Hint

A = [1 2 4 7]

SUM 0 2, result=1+2+4=7;

XOR 5 0 0, A=[4 2 4 7];

OR 6 0 3, A=[6 6 6 7];

SUM 0 2, result=6+6+6=18.

大神说,经过若干次的操作就会出现很多相同的,然后懒惰标记就用来记做 这个区间又没用相同的

 #include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long LL;
const int Max = + ;
int n, m;
struct Node
{
int l, r;
int num;
};
Node node[Max * ];
int A[Max];
void buildtree(int l, int r, int k)
{
node[k].l = l;
node[k].r = r;
node[k].num = -;
if (l == r)
{
node[k].num = A[l];
return;
}
int mid = (l + r) / ;
buildtree(l, mid, k * );
buildtree(mid + , r, k * + );
if (node[k * ].num >= && node[k * ].num == node[k * + ].num) // 如果左边区间和右边区间 num 相同,就要更改父节点
{
node[k].num = node[k * ].num;
}
}
int getopt(int num, int opn, int opt)
{
if (opt == )
return opn & num;
if (opt == )
return opn | num;
if (opt == )
return (opn ^ num);
return ;
}
void update(int l, int r, int k, int opn, int opt)
{
if (node[k].l == l && node[k].r == r && node[k].num >= )
{
// 区间【l, r】上的数是相同的,只需改一次就ok了
node[k].num = getopt(node[k].num, opn, opt);
return;
}
// 不相同的话就继续往左右两边改
if (node[k].num >= ) // 在改的过程中发现该点标记过,分给子节点,去掉自己的标记
{
node[k * ].num = node[k * + ].num = node[k].num;
node[k].num = -;
}
int mid = (node[k].l + node[k].r) / ;
if (r <= mid)
update(l, r, k * , opn, opt);
else if (mid < l)
{
update(l, r, k * + , opn, opt);
}
else
{
update(l, mid, k * , opn, opt);
update(mid + , r, k * + , opn, opt);
}
if (node[k * ].num >= && node[k * ].num == node[k * + ].num)
node[k].num = node[k * ].num;
}
LL querry(int l, int r, int k)
{
if (node[k].l == l && node[k].r == r && node[k].num >= )
{
return (LL) node[k].num * (LL) (node[k].r - node[k].l + );
}
if (node[k].num >= )
{
node[k * ].num = node[k * + ].num = node[k].num;
node[k].num = -;
}
int mid = (node[k].r + node[k].l) / ;
if (r <= mid)
{
return querry(l, r, k * );
}
else if (mid < l)
{
return querry(l, r, k * + );
}
else
return querry(l, mid, k * ) + querry(mid + , r, k * + );
}
int main()
{
int t;
scanf("%d", &t);
while (t--)
{
scanf("%d%d", &n, &m);
for (int i = ; i <= n; i++)
scanf("%d", &A[i]);
buildtree(, n, );
while (m--)
{
char opt[];
int opn, a, b;
scanf("%s", opt);
if (opt[] == 'S')
{
scanf("%d%d", &a, &b);
printf("%I64d\n", querry(a + , b + , ));
}
else
{
scanf("%d%d%d", &opn, &a, &b);
if (opt[] == 'A')
{
update(a + , b + , , opn, );
}
else if (opt[] == 'O')
{
update(a + , b + , , opn, );
}
else
update(a + , b + , , opn, );
}
}
}
return ;
}