CCPC网赛第八题,求立体几何数量,题解见注释
//立体几何-求满足要求的四面体个数
//要求1:至少4条边相等
//要求2:四条边相等时,另两条边一定不相邻(即对边)
//题解:以当前边为不相邻的其中一条边,对可以构成等腰三角形的第三点进行枚举
//再对这些第三点的集合做一次n^2的枚举,分两种情况找出四面体
//如果四条边或五条边相同,则只存在两种重复情况(当前边和对边互换)
//如果六条边相同,则存在六种重复情况(每个边作一次当前边)
//Time:499Ms Memory:1576K
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std; #define MAXP 205
#define POW(x) ((x)*(x)) struct Point{
int x, y, z;
Point() {}
Point(int xx, int yy, int zz):x(xx), y(yy), z(zz){}
}p[MAXP]; struct Node {
int d, u;
Node(){}
Node(int dd, int uu):d(dd), u(uu){}
}nd[MAXP]; int n;
int len; int Distance(Point a, Point b)
{
return POW(a.x - b.x) + POW(a.y - b.y) + POW(a.z - b.z);
} Point xmult(Point a, Point b) //叉积
{
return Point(a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x);
}
//向量差a-b(b到a)
Point subt(Point a, Point b)
{
return Point(a.x - b.x, a.y - b.y, a.z - b.z);
} int dmult(Point a, Point b) //点积
{
return a.x*b.x + a.y*b.y + a.z*b.z;
} //取平面法向量
Point normalv(Point a, Point b, Point c)
{
return xmult(subt(a, b), subt(b, c));
} bool onplane(Point a, Point b, Point c, Point d) //四点共面
{
return dmult(normalv(a, b, c), subt(d, a)) == 0;
} int main()
{
//freopen("t.in", "r", stdin);
int T;
int cas = 1;
scanf("%d", &T);
while (T--) {
scanf("%d", &n);
for (int i = 0; i < n; i++)
scanf("%d%d%d", &p[i].x, &p[i].y, &p[i].z);
int sum1 = 0, sum2 = 0; //sum1:六条边不全相等,sum2:六条边都相等
for (int i = 0; i < n; i++)
{
for (int j = i + 1; j < n; j++)
{
len = 0;
for (int k = 0; k < n; k++) //枚举到ij线段上距离相等的第三点k
{
if (k == i || k == j) continue;
int tmp = Distance(p[i], p[k]);
if (tmp == Distance(p[j], p[k]))
nd[len++] = Node(tmp, k);
} for (int k1 = 0; k1 < len; k1++)
{
for (int k2 = k1 + 1; k2 < len; k2++)
{
if (nd[k1].d != nd[k2].d) continue;
if (onplane(p[i], p[j], p[nd[k1].u], p[nd[k2].u])) continue;
int tmp = Distance(p[nd[k1].u], p[nd[k2].u]);
if (tmp == Distance(p[i], p[j]) && tmp == nd[k1].d)
sum2++; //六条边相等
else sum1++;
}
} }
}
printf("Case #%d: %d\n", cas++, sum1/2+sum2/6);
} return 0;
}