机器学习第二关——k-means算法流程

时间:2025-05-10 07:40:34
#encoding=utf8 import numpy as np # 计算一个样本与数据集中所有样本的欧氏距离的平方 def euclidean_distance(one_sample, X): one_sample = one_sample.reshape(1, -1) distances = np.power(np.tile(one_sample, (X.shape[0], 1)) - X, 2).sum(axis=1) return distances class Kmeans(): """Kmeans聚类算法. Parameters: ----------- k: int 聚类的数目. max_iterations: int 最大迭代次数. varepsilon: float 判断是否收敛, 如果上一次的所有k个聚类中心与本次的所有k个聚类中心的差都小于varepsilon, 则说明算法已经收敛 """ def __init__(self, k=2, max_iterations=500, varepsilon=0.0001): self.k = k self.max_iterations = max_iterations self.varepsilon = varepsilon np.random.seed(1) #********* Begin *********# # 从所有样本中随机选取样本作为初始的聚类中心 def init_random_centroids(self, X): n_samples,n_features =np.shape(X) centroids = np.zeros((self.k, n_features)) for p in range(self.k): centroid =X[np.random.choice(range(n_samples))] centroids[p] =centroid return centroids # 返回距离该样本最近的一个中心索引[0, ) def _closest_centroid(self, sample, centroids): distances = euclidean_distance(sample, centroids) closest_i = np.argmin(distances) return closest_i # 将所有样本进行归类,归类规则就是将该样本归类到与其最近的中心 def create_clusters(self, centroids, X): #n_samples = (X)[0] clusters =[[]for _ in range(self.k)] for sample_i, sample in enumerate(X): centroid_i = self._closest_centroid(sample, centroids) clusters[centroid_i].append(sample_i) return clusters # 对中心进行更新 def update_centroids(self, clusters, X): n_features = np.shape(X)[1] centroids = np.zeros((self.k,n_features)) for i, cluster in enumerate(clusters): centroid = np.mean(X[cluster],axis=0) centroids[i] = centroid return centroids # 将所有样本进行归类,其所在的类别的索引就是其类别标签 def get_cluster_labels(self, clusters, X): y_pred = np.zeros(np.shape(X)[0]) for cluster_i,cluster in enumerate(clusters): for sample_i in cluster: y_pred[sample_i] = cluster_i return y_pred # 对整个数据集X进行Kmeans聚类,返回其聚类的标签 def predict(self, X): # 从所有样本中随机选取样本作为初始的聚类中心 centroids = self.init_random_centroids(X) # 迭代,直到算法收敛(上一次的聚类中心和这一次的聚类中心几乎重合)或者达到最大迭代次数 for _ in range(self.max_iterations): clusters =self.create_clusters(centroids,X) # 将所有进行归类,归类规则就是将该样本归类到与其最近的中心 former_centroids = centroids # 计算新的聚类中心 centroids = self.update_centroids(clusters, X) # 如果聚类中心几乎没有变化,说明算法已经收敛,退出迭代 diff = centroids - former_centroids if diff.any() <self.varepsilon: break return self.get_cluster_labels(clusters,X) #********* End *********#