LangChain-23 Vector stores 向量化存储 并附带一个实际案例 通过Loader加载 Embedding后持久化 LangChain ChatOpenAI ChatGLM3对话

时间:2025-05-08 07:33:12
from langchain_community.document_loaders import UnstructuredWordDocumentLoader from langchain.text_splitter import CharacterTextSplitter from langchain_community.vectorstores import Chroma from langchain_community.embeddings import OpenAIEmbeddings, HuggingFaceEmbeddings from langchain.chains import RetrievalQA from langchain_community.llms import OpenAI from langchain_community.llms.chatglm3 import ChatGLM3 from langchain_community.document_loaders import Docx2txtLoader from langchain_core.output_parsers import JsonOutputParser from operator import itemgetter from langchain_core.messages import AIMessage, HumanMessage, get_buffer_string from langchain_core.prompts import format_document from langchain_core.runnables import RunnableParallel, RunnablePassthrough, RunnableLambda from langchain_openai.chat_models import ChatOpenAI from langchain_openai import OpenAIEmbeddings from langchain.prompts.prompt import PromptTemplate from langchain.prompts.chat import ChatPromptTemplate from langchain_core.output_parsers import StrOutputParser from langchain_community.vectorstores import DocArrayInMemorySearch from langchain.memory import ConversationBufferMemory import langchain.tools from flask import Flask need_embedding = False persist_directory = 'chroma' if need_embedding: # 加载Word文档并提取文本 # loader = UnstructuredWordDocumentLoader("./") loader = Docx2txtLoader("./") documents = loader.load() # 将文本分割成块 text_splitter = CharacterTextSplitter(chunk_size=2000, chunk_overlap=500) texts = text_splitter.split_documents(documents) # 初始化向量存储和嵌入 # embeddings = OpenAIEmbeddings() embeddings = HuggingFaceEmbeddings(model_name='./text2vec-base-chinese') db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory) # 保存向量存储 db.persist() else: # 加载向量存储 # embeddings = OpenAIEmbeddings() embeddings = HuggingFaceEmbeddings(model_name='./text2vec-base-chinese') db = Chroma(persist_directory=persist_directory, embedding_function=embeddings) # 定义检索器和生成器 retriever = db.as_retriever() # qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=retriever) # # # 处理用户查询 # query = "全息智能感知" # result = (query) # print(result) # ===================================== _template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its orignal language. Chat History: {chat_history} Follow Up Input: {question} Standalone question:""" CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template) template = """Answer the question based only on the following context, 请用中文回复: {context} Question: {question} """ ANSWER_PROMPT = ChatPromptTemplate.from_template(template) DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}") def llm(): result = ChatOpenAI(temperature=0.8) # endpoint_url = "http://10.10.7.160:8000/v1/chat/completions" # result = ChatGLM3( # endpoint_url=endpoint_url, # max_tokens=2048, # ) return result def _combine_documents( docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, document_separator="\n\n" ): doc_strings = [format_document(doc, document_prompt) for doc in docs] return document_separator.join(doc_strings) _inputs = RunnableParallel( standalone_question=RunnablePassthrough.assign( chat_history=lambda x: get_buffer_string(x["chat_history"]) ) | CONDENSE_QUESTION_PROMPT | llm() | StrOutputParser(), ) memory = ConversationBufferMemory( return_messages=True, output_key="answer", input_key="question" ) # First we add a step to load memory # This adds a "memory" key to the input object loaded_memory = RunnablePassthrough.assign( chat_history=RunnableLambda(memory.load_memory_variables) | itemgetter("history"), ) # Now we calculate the standalone question standalone_question = { "standalone_question": { "question": lambda x: x["question"], "chat_history": lambda x: get_buffer_string(x["chat_history"]), } | CONDENSE_QUESTION_PROMPT | llm() | StrOutputParser(), } # Now we retrieve the documents retrieved_documents = { "docs": itemgetter("standalone_question") | retriever, "question": lambda x: x["standalone_question"], } # Now we construct the inputs for the final prompt final_inputs = { "context": lambda x: _combine_documents(x["docs"]), "question": itemgetter("question"), } # And finally, we do the part that returns the answers answer = { "answer": final_inputs | ANSWER_PROMPT | llm(), "docs": itemgetter("docs"), } # And now we put it all together! final_chain = loaded_memory | standalone_question | retrieved_documents | answer # flask app = Flask(__name__) @app.route("/get/<question>") def get(question): inputs = {"question": f"{question}"} result = final_chain.invoke(inputs) # print("=============================") print(f"result1: {result}") return str(result['answer']) app.run(host='0.0.0.0', port=8888, debug=True)