1. torch.cosine_similarity 对应两个向量计算相似度
a = (100,128)
b = (100,128)
torch.cosine_similarity(a, b, dim=-1).shape
>>> ([100])
2. torch.cosine_similarity 对任意两个向量之间两两计算相似度
也就是希望得到一个 [N, N]的一个矩阵
方法一:循环
def get_att_dis(target, behaviored):
attention_distribution = []
for i in range((0)):
attention_score = torch.cosine_similarity(target[i].view(1, -1), behaviored) # 计算每一个元素与给定元素的余弦相似度
attention_distribution.append(attention_score)
return (attention_distribution)
方法二:广播
s = torch.cosine_similarity((1), (0), dim=-1)
>>> [100,100]