对于三维张量:
import torch
a = ([[[-1., 0]], [[1., 0]]])
b = ([[[1., 1.], [2., 1.]]])
print()
print()
x = (-1)
result = x(a, b)
print(result)
输出:
([2, 1, 2]) # 张量a的形状
([1, 2, 2]) # 张量b的形状
# 余弦相似度
tensor([[-0.7071, -0.8944],
[ 0.7071, 0.8944]])
为什么两个三维张量的余弦相似度是一个二维张量呢?二维张量中的数分别代表了什么意义?
验证一下
from scipy import spatial
print('\nresult[0][0]')
data1 = [-1, 0]
data2 = [1., 1.]
x = (data1, data2)
print(x)
print('\nresult[0][1]')
data1 = [-1, 0]
data2 = [2., 1.]
x = (data1, data2)
print(x)
print('\nresult[1][0]')
data1 = [1., 0]
data2 = [1., 1.]
x = (data1, data2)
print(x)
print('\nresult[1][1]:')
data1 = [1., 0]
data2 = [2., 1.]
x = (data1, data2)
print(x)
输出:
result[0][0]
-0.7071067811865475
result[0][1]
-0.8944271909999157
result[1][0]
0.7071067811865475
result[1][1]:
0.8944271909999159
验证成功,对于三维张量,可以看作是两个矩阵(第一维是矩阵的行,第二维是矩阵的列,而第三维对应该矩阵中的元素,它是一个向量)。
这个顺序就和高数中含有多个变量的函数求偏导的顺序很像。
参考:.cosine_similarity使用详解_JasonLiu1919的博客-****博客