两个限制条件:
(M_PI_2); //角度:
(atoi(argv[3])); //搜索点:
#include <iostream>
#include <vector>
#include <ctime>
#include <boost/thread/>
#include <pcl/io/pcd_io.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/console/>
#include <pcl/features/>
#include <pcl/features/>
#include <pcl/features/normal_3d.h>
#include <pcl/impl/point_types.hpp>
#include <pcl/features/>
#include <pcl/visualization/cloud_viewer.h>
using namespace std;
int main(int argc, char **argv)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
if (pcl::io::loadPCDFile<pcl::PointXYZ>(argv[1], *cloud) == -1)
{
PCL_ERROR("COULD NOT READ FILE \n");
return (-1);
}
std::cout << "points sieze is:" << cloud->size() << std::endl;
pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);
pcl::PointCloud<pcl::Boundary> boundaries;
pcl::BoundaryEstimation<pcl::PointXYZ, pcl::Normal, pcl::Boundary> est;
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>());
//创建一个快速k近邻查询,查询的时候若该点在点云中,则第一个近邻点是其本身
pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;
(cloud);
int k =2;
float everagedistance =0;
for (int i =0; i < cloud->size()/2;i++)
{
//std::cout << "cloud->size()/2" << cloud->points[i] << std::endl;
vector<int> nnh;
vector<float> squaredistance;
// pcl::PointXYZ p;
// p = cloud->points[i];
(cloud->points[i], k, nnh, squaredistance);
/*std::cout << "查询点位: " << cloud->points[i] << std::endl;
std::cout << "近邻为: " << nnh[0] << " " << nnh[1] << std::endl;
std::cout << "近邻为: " << cloud->points[nnh[0]] << " " << cloud->points[nnh[1]] << std::endl;
*/
everagedistance += sqrt(squaredistance[1]);
// cout<<everagedistance<<endl;
}
everagedistance = everagedistance/(cloud->size()/2);
cout<<"everage distance is : "<<everagedistance<<endl;
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> normEst; //其中pcl::PointXYZ表示输入类型数据,pcl::Normal表示输出类型,且pcl::Normal前三项是法向,最后一项是曲率
(cloud);
(tree);
// (2); //法向估计的半径
(9); //法向估计的点数
(*normals);
cout << "normal size is " << normals->size() << endl;
//normal_est.setViewPoint(0,0,0); //这个应该会使法向一致
(cloud);
(normals);/*M_PI_2 */
(M_PI_2); ///在这里 由于构造函数已经对其进行了初始化 为Π/2 ,必须这样 使用 M_PI/2 M_PI_2
(tree);
(atoi(argv[3])); //一般这里的数值越高,最终边界识别的精度越好 20
// (everagedistance); //搜索半径
(boundaries);
// pcl::PointCloud<pcl::PointXYZ> boundPoints;
pcl::PointCloud<pcl::PointXYZ>::Ptr boundPoints(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ> noBoundPoints;
int countBoundaries = 0;
for (int i = 0; i<cloud->size(); i++){
uint8_t x = ([i].boundary_point);
int a = static_cast<int>(x); //该函数的功能是强制类型转换
if (a == 1)
{
// boundPoints.push_back(cloud->points[i]);
(*boundPoints).push_back(cloud->points[i]);
countBoundaries++;
}
else
noBoundPoints.push_back(cloud->points[i]);
}
std::cout << "boudary size is:" << countBoundaries << std::endl;
// pcl::io::savePCDFileASCII("",boundPoints);
pcl::io::savePCDFileASCII("", *boundPoints);
pcl::io::savePCDFileASCII("", noBoundPoints);
pcl::visualization::CloudViewer viewer("test");
(boundPoints);
while (!())
{
}
return 0;
}