这是后期补充的部分,和前期的代码不太一样
效果图
源代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
|
/ / 测试
void CCutImageVS2013Dlg::OnBnClickedTestButton1()
{
vector<vector<Point> > contours; / / 轮廓数组
vector<Point2d> centers; / / 轮廓质心坐标
vector<vector<Point> >::iterator itr; / / 轮廓迭代器
vector<Point2d>::iterator itrc; / / 质心坐标迭代器
vector<vector<Point> > con; / / 当前轮廓
double area;
double minarea = 1000 ;
double maxarea = 0 ;
Moments mom; / / 轮廓矩
Mat image, gray, edge, dst;
image = imread( "D:\\66.png" );
cvtColor(image, gray, COLOR_BGR2GRAY);
Mat rgbImg(gray.size(), CV_8UC3); / / 创建三通道图
blur(gray, edge, Size( 3 , 3 )); / / 模糊去噪
threshold(edge, edge, 200 , 255 , THRESH_BINARY_INV); / / 二值化处理,黑底白字
/ / - - - - - - - - 去除较小轮廓,并寻找最大轮廓 - - - - - - - - - - - - - - - - - - - - - - - - - -
findContours(edge, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE); / / 寻找轮廓
itr = contours.begin(); / / 使用迭代器去除噪声轮廓
while (itr ! = contours.end())
{
area = contourArea( * itr); / / 获得轮廓面积
if (area<minarea) / / 删除较小面积的轮廓
{
itr = contours.erase(itr); / / itr一旦erase,需要重新赋值
}
else
{
itr + + ;
}
if (area>maxarea) / / 寻找最大轮廓
{
maxarea = area;
}
}
dst = Mat::zeros(image.rows, image.cols, CV_8UC3);
/ * 绘制连通区域轮廓,计算质心坐标 * /
Point2d center;
itr = contours.begin();
while (itr ! = contours.end())
{
area = contourArea( * itr);
con.push_back( * itr); / / 获取当前轮廓
if (area = = maxarea)
{
vector<Rect> boundRect( 1 ); / / 定义外接矩形集合
boundRect[ 0 ] = boundingRect(Mat( * itr));
cvtColor(gray, rgbImg, COLOR_GRAY2BGR);
Rect select;
select.x = boundRect[ 0 ].x;
select.y = boundRect[ 0 ].y;
select.width = boundRect[ 0 ].width;
select.height = boundRect[ 0 ].height;
rectangle(rgbImg, select, Scalar( 0 , 255 , 0 ), 3 , 2 ); / / 用矩形画矩形窗
drawContours(dst, con, - 1 , Scalar( 0 , 0 , 255 ), 2 ); / / 最大面积红色绘制
}
else
drawContours(dst, con, - 1 , Scalar( 255 , 0 , 0 ), 2 ); / / 其它面积蓝色绘制
con.pop_back();
/ / 计算质心
mom = moments( * itr);
center.x = ( int )(mom.m10 / mom.m00);
center.y = ( int )(mom.m01 / mom.m00);
centers.push_back(center);
itr + + ;
}
imshow( "rgbImg" , rgbImg);
/ / imshow( "gray" , gray);
/ / imshow( "edge" , edge);
imshow( "origin" , image);
imshow( "connected_region" , dst);
waitKey( 0 );
return ;
}
|
前期做的,方法可能不太一样
一,先看效果图
原图
处理前后图
二,实现源代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
|
/ / = = = = = = = 函数实现 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
void RemoveSmallRegion(Mat &Src, Mat &Dst, int AreaLimit, int CheckMode, int NeihborMode)
{
int RemoveCount = 0 ;
/ / 新建一幅标签图像初始化为 0 像素点,为了记录每个像素点检验状态的标签, 0 代表未检查, 1 代表正在检查, 2 代表检查不合格(需要反转颜色), 3 代表检查合格或不需检查
/ / 初始化的图像全部为 0 ,未检查
Mat PointLabel = Mat::zeros(Src.size(), CV_8UC1);
if (CheckMode = = 1 ) / / 去除小连通区域的白色点
{
/ / cout << "去除小连通域." ;
for ( int i = 0 ; i < Src.rows; i + + )
{
for ( int j = 0 ; j < Src.cols; j + + )
{
if (Src.at<uchar>(i, j) < 10 )
{
PointLabel.at<uchar>(i, j) = 3 ; / / 将背景黑色点标记为合格,像素为 3
}
}
}
}
else / / 去除孔洞,黑色点像素
{
/ / cout << "去除孔洞" ;
for ( int i = 0 ; i < Src.rows; i + + )
{
for ( int j = 0 ; j < Src.cols; j + + )
{
if (Src.at<uchar>(i, j) > 10 )
{
PointLabel.at<uchar>(i, j) = 3 ; / / 如果原图是白色区域,标记为合格,像素为 3
}
}
}
}
vector<Point2i>NeihborPos; / / 将邻域压进容器
NeihborPos.push_back(Point2i( - 1 , 0 ));
NeihborPos.push_back(Point2i( 1 , 0 ));
NeihborPos.push_back(Point2i( 0 , - 1 ));
NeihborPos.push_back(Point2i( 0 , 1 ));
if (NeihborMode = = 1 )
{
/ / cout << "Neighbor mode: 8邻域." << endl;
NeihborPos.push_back(Point2i( - 1 , - 1 ));
NeihborPos.push_back(Point2i( - 1 , 1 ));
NeihborPos.push_back(Point2i( 1 , - 1 ));
NeihborPos.push_back(Point2i( 1 , 1 ));
}
else int a = 0 ; / / cout << "Neighbor mode: 4邻域." << endl;
int NeihborCount = 4 + 4 * NeihborMode;
int CurrX = 0 , CurrY = 0 ;
/ / 开始检测
for ( int i = 0 ; i < Src.rows; i + + )
{
for ( int j = 0 ; j < Src.cols; j + + )
{
if (PointLabel.at<uchar>(i, j) = = 0 ) / / 标签图像像素点为 0 ,表示还未检查的不合格点
{ / / 开始检查
vector<Point2i>GrowBuffer; / / 记录检查像素点的个数
GrowBuffer.push_back(Point2i(j, i));
PointLabel.at<uchar>(i, j) = 1 ; / / 标记为正在检查
int CheckResult = 0 ;
for ( int z = 0 ; z < GrowBuffer.size(); z + + )
{
for ( int q = 0 ; q < NeihborCount; q + + )
{
CurrX = GrowBuffer.at(z).x + NeihborPos.at(q).x;
CurrY = GrowBuffer.at(z).y + NeihborPos.at(q).y;
if (CurrX > = 0 && CurrX<Src.cols&&CurrY > = 0 && CurrY<Src.rows) / / 防止越界
{
if (PointLabel.at<uchar>(CurrY, CurrX) = = 0 )
{
GrowBuffer.push_back(Point2i(CurrX, CurrY)); / / 邻域点加入 buffer
PointLabel.at<uchar>(CurrY, CurrX) = 1 ; / / 更新邻域点的检查标签,避免重复检查
}
}
}
}
if (GrowBuffer.size()>AreaLimit) / / 判断结果(是否超出限定的大小), 1 为未超出, 2 为超出
CheckResult = 2 ;
else
{
CheckResult = 1 ;
RemoveCount + + ; / / 记录有多少区域被去除
}
for ( int z = 0 ; z < GrowBuffer.size(); z + + )
{
CurrX = GrowBuffer.at(z).x;
CurrY = GrowBuffer.at(z).y;
PointLabel.at<uchar>(CurrY, CurrX) + = CheckResult; / / 标记不合格的像素点,像素值为 2
}
/ / * * * * * * * * 结束该点处的检查 * * * * * * * * * *
}
}
}
CheckMode = 255 * ( 1 - CheckMode);
/ / 开始反转面积过小的区域
for ( int i = 0 ; i < Src.rows; + + i)
{
for ( int j = 0 ; j < Src.cols; + + j)
{
if (PointLabel.at<uchar>(i, j) = = 2 )
{
Dst.at<uchar>(i, j) = CheckMode;
}
else if (PointLabel.at<uchar>(i, j) = = 3 )
{
Dst.at<uchar>(i, j) = Src.at<uchar>(i, j);
}
}
}
/ / cout << RemoveCount << " objects removed." << endl;
}
/ / = = = = = = = 函数实现 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
/ / = = = = = = = 调用函数 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
Mat img;
threshold(img, img, 128 , 255 , CV_THRESH_BINARY_INV);
imshow( "去除前" , img);
Mat img1;
RemoveSmallRegion(img, img, 200 , 0 , 1 );
imshow( "去除后" , img);
waitKey( 0 );
/ / = = = = = = = 调用函数 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
以上这篇使用OpenCV去除面积较小的连通域就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/sxlsxl119/article/details/80493655