最小生成树
通俗解释:一个连通图,可将这个连通图删减任意条边,仍然保持连通图的状态并且所有边权值加起来的总和使其达到最小。这就是最小生成树
可以参考下图,便于理解
原来的图:
最小生成树(蓝色线):
最小生成树主要有prim和kruskal两种算法
其中prim可以用优先队列实现,kruskal使用并查集来实现
两种算法针对于不同的数据规模有不同的效率,根据不同的题目可以选择相应的算法。
经典最小生成树算法应用的案例如HDU-1863这个问题
概述:
省*“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。经过调查评估,得到的统计表中列出了有可能建设公路的若干条道路的成本。现请你编写程序,计算出全省畅通需要的最低成本。输入:
测试输入包含若干测试用例。每个测试用例的第1行给出评估的道路条数 N、村庄数目M ( < 100 );随后的 N
行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。输出:
对每个测试用例,在1行里输出全省畅通需要的最低成本。若统计数据不足以保证畅通,则输出“?”。输入样例:
3 3
1 2 1
1 3 2
2 3 4
1 3
2 3 2
0 100输出样例:
3
?题目来源于杭电HDU HDU-1863
这道题其实就是要求计算出最小生成树的所有路径长度
可以直接在计算过程中累加即可,接下来介绍这两种算法并试着如何解决这个问题:
prim算法
prim算法需要依赖邻接表,以及存储边的优先队列(原理基本上等同于堆排序,实际上用数组排序也可以,但考虑到时间复杂度推荐使用优先队列),总体来说代码比较容易,反复练习几遍基本上就能掌握
其中类似于广搜的思路,代码如下:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<vector>
using namespace std;
#define pb push_back
#define mp make_pair
//定义结构体用来存储边
struct nod{
int x,y;
int val;
nod(){};
nod(int x,int y,int v):x(x),y(y),val(v){};
};
//使优先队列从小到大排序,这里注意应该使用大于号,因为优先队列是默认大的先出队
bool operator<(nod a,nod b){
return a.val>b.val;
}
int co;
int cou;
int guess;
//定义类型
typedef vector<pair<int,int> > ve_pa;
ve_pa ve[1000]; //邻接表
priority_queue<nod> pq; //优先队列给已加入的边进行排序
int have[1000]; //该点是否已经计算完成
int main(){
int line;
while(cin>>line>>co){
if(line==0)break;
//初始化
while(!pq.empty())pq.pop();
for(int i=1;i<=co;i++)ve[i].clear();
memset(have,0,sizeof(have));
cou=0;
guess=1;
//获取输入,存入邻接表
for(int i=1;i<=line;i++){
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
ve[a].pb(mp(b,c));
ve[b].pb(mp(a,c));
}
//起始队列插入
have[1]=1;
for(ve_pa::iterator vi=ve[1].begin();vi!=ve[1].end();vi++){
pq.push(nod(1,vi->first,vi->second));
}
//开始计算队列
while(!pq.empty()){
if(guess>=co)break; //点是否全部计算完成
nod temp=pq.top();
pq.pop();
if(have[temp.y])continue; //该点是否计算完成
have[temp.y]=1; //该点已计算完成
guess++; //已计算的点数+1
cou+=temp.val; //记录最小生成树的权值总和
for(ve_pa::iterator vi=ve[temp.y].begin();vi!=ve[temp.y].end();vi++){
//从邻接表对该点进行遍历,加入队列
pq.push(nod(temp.y,vi->first,vi->second));
}
}
//如果非连通图,则输出?
if(guess!=co){
cout<<"?"<<endl;
}else{
cout<<cou<<endl;
}
}
}
kruskal算法
kruskal算法依赖并查集,用并查集来判断图是否存在回路。
该算法并不需要邻接表,仅需存储边即可。在算法中需要按照边长短做一次排序。然后依次从小到大并查集合并,每次合并时把边权值加入到统计就能求出结果。
掌握了并查集之后思路也好理解,代码如下:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<vector>
using namespace std;
#define pb push_back
#define mp make_pair
//定义结构体用于存储所有的边
struct nod{
int a,b,v;
nod(){};
nod(int a,int b,int v):a(a),b(b),v(v){};
}
//对边从小到大排序
bool operator < (nod a,nod b){
return a.v<b.v;
}
int fa[1000]; //并查集中该点的父节点下标
int sum=0,times=0;
nod nods[5000];
//并查集两个函数
int uf_find(int a){
if(a==fa[a])return a;
return fa[a]=uf_find(fa[a]);
}
int uf_union(int a,int b){
int ra=uf_find(a),rb=uf_find(b);
if(ra!=rb){
fa[rb]=ra;
}
}
int main(){
int co,line;
while(cin>>line>>co){
if(line==0)break;
//初始化
for(int i=1;i<=co;i++)fa[i]=i;
sum=0;
times=1;
//读取输入
for(int i=0;i<line;i++){
int a,b,c;
scanf("%d%d%d",&nods[i].a,&nods[i].b,&nods[i].v);
}
//排序
sort(nods,nods+line);
//从小到大遍历
for(int i=0;i<line;i++){
if(times>=co)break;//剪枝
//如果该边对应的两个点是一个集合里的,则跳过
if(uf_find(nods[i].a)==uf_find(nods[i].b))continue;
//合并
uf_union(nods[i].a,nods[i].b);
//记录最小生成树的权值总和
sum+=nods[i].v;
times++;
}
//如果非连通图,则输出?
if(times<co){
cout<<"?"<<endl;
}else{
cout<<sum<<endl;
}
}
}